BETPT-C

武汉伯恩特电力科技有限公司

电话: 17762792855/027-82621016

网址 http://www.whfulude.com/

尊敬的用户:

感谢您使用本公司无线二次压降及负荷测试仪。<u>在您初次使用该仪器</u> 前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。

我们的宗旨是不断地改进和完善公司的产品,因此您所使用的仪器可能 与使用说明书有少许的差别。如果有改动的话,敬请谅解!您有疑问,请与 公司售后服务部联系,我们定会解答您的问题。

由于电压输入端子、电源线等均有可能带电压,您在插拔测试线、电源 插座时,会产生电火花,小心电击,避免触电危险,注意人身安全!

安全要求

防止电击和火灾及人身伤害!

只有经过专业培训的人员才能操作此仪器/仪表。 为了防止火灾或电击危险,在使用本产品进行试验之前,请务 必详细阅读本产品使用说明书,按照产品额定值和标识及满足 要求的试验环境进行试验。

请勿触摸裸露的带电金属!

若本产品有损坏或者有故障时,切勿继续操作,请立即与本公司售后工程师联系,及时对产品进行维修。请勿在仪器无前 (后)盖板的情况下操作仪器/仪表。

请勿在潮湿环境下操作。 保持产品表面清洁和干燥。

前 言

本仪器具备两种仪器的功能:无线二次压降及负荷测试仪、电能表现场校验仪。 仪器由主机和分机及配件组成,其中主机既可做为无线压降功能的主机,又可以选择成为 电能表现场校验仪,在开机界面可进行功能选择,如图所示:

图中提示:选项 1.PT 压降负荷测试仪,选项 2.电能表现场校验仪。通过按数字键[1] 和[2]进行选择(或者按 F1、F2 功能键也可)。

在后面,我们将分别对两种功能进行详细说明。

第一部分 无线二次压降负荷测试仪

一、功能特点

1、通过无线的方式自动完成三相三线或三相四线制的电压互感器二次压降的测量,不需 要普通方式中要在仪器到测试远端铺设一条很长的电压测试线,这样可避免由于线路过长 引起的不必要的短路故障:

2、非 GPS 同步方式,无需寻星,使用快捷、方便。

3、自动计算三相的比差、角差、综合误差。

4、自动测量电压、电流互感器二次回路的负荷。

5、能自动检测并存储在各种接线方式下由测试导线等引起的测量误差数据,并在以后的 测试中自动修正。

6、特别设计了软件修正功能,不需硬件调整就能实现精度修正,在各级电力试验研究部 门均可现场检定。

7、各种电参量同屏显示,电压、电流、相角、功率因数、有功功率、无功功率、视在功 率均可测量;可显示各相参数的波形图。

8、具备谐波测量功能,可测量 32 次以下电压、电流的谐波含量。

9、内置大容量充电电池组,在室外无 220V 交流电情况下可由仪器内电池组供电,内置 快速自动充电器,可对电池组快速充电。

10、电池剩余电量百分数指示功能,绝非简单的亏电报警。

11、大屏幕、高亮度的真彩色液晶显示屏,全汉字图形化菜单及操作提示实现友好的人 机对话,导电硅胶按键使操作更简便,宽温液晶带自动对比度、亮度调节,可适应冬夏各 季。

12、用户可随时将测试的数据通过微型打印机将结果打印出来。

13、测试结果存储功能,可存储 200 组测试数据。

14、配备了后台管理软件,可将存储记录上传到计算机进行统一管理。 68MIE 19

二、技术指标

1、使用环境

(1) 环境温度: -10℃~ 40℃

- (2) 相对湿度: ≤80%
- 2、 测量精度

本仪器的测量精度为1级。

比差: $\Delta f = \pm (1\% \times f + 1\% \times \delta) \pm 0.01$ (%)

角差: $\Delta \delta = \pm (1\% \times \delta + 1\% \times f) \pm 1$ (分)

电导: G=± (1%×G+1%×δ±0.01) mS

电纳: $\delta = \pm$ (1%× δ +1%×G±0.01)mS

- 负荷: S=土 (1%×S±0.1)VA
- 电阻: R=± (1%×R+1%×X±0.1)Ω

电抗: X=± (1%×X+1%×R±0.1)Ω

- 3、充电电源: 交流 176V~264V, 频率 45-55Hz
- 4、 仪器的测量范围和分辨率

测试项目	范围	最小分辨率
电压测量范围(V)	40~120.000	0.001
电流测量范围(A)	0.005~6	0.0001
比差值(%)	-10.000~10.000	0.001
角差值(1)	-600~600.00	0.01
误差值(%)	-10.000~10.000	0.001
修约(%)	-10.000~10.000	0.001

5、绝缘: (1)、电压、电流输入端对机壳的绝缘电阻≥100MΩ。

(2)、工作电源输入端对外壳之间承受工频 2KV(有效值),历时 1 分钟实验。6、电池工作时间:充满后工作时间大于 6 小时。

7、体积:

主机: 32cm×24cm×13cm

分机: 32cm×24cm×13cm

- 8、重量:
 - 主机: 2.5Kg
 - 分机: 2Kg

三、结构外观

仪器由主机和配件箱两部分组成,其中主机是仪器的核心,所有的电气部分都在主机和分 机内部,其主机和分机的外箱采用高强度进口防水注塑机箱,坚固耐用,配件箱用来放置 测试导线及工具。

图一、主分机与配件箱尺寸

2、 面板布置

主机面板布置 (图二)

图二、主机面板布置图

如图二所示:最上方从左到右依次为电压测试用端子(Ua、Ub、Uc、Un)、电流测试端

子(la+、la-、lb+、lb-、lc+、lc-)、钳形电流互感器接口(钳la、钳lb、钳lc)、天线接口、同步信号接口、USB接口、接地端子、RS232通讯接口、采样脉冲接口(压降功能下无用)、充电电源插座、工作电源开关、打印机;注意在操作时一定要确保所接的端子正确,否则有可能会影响测试结果甚至损坏仪器;最好经常充电,以免电池过量放电影响其使用寿命。面板左下方为液晶显示屏;液晶右侧为键盘。

分机面板布置(图三)

图三、分机面板布置图

如图三所示:面板上方从左到右分别为电压输入端子、天线接口、同步信号接口、接地端子、RS232通讯接口、充电指示、充电插座及工作开关,下侧从左到右分别为液晶屏、操作键盘。

3、键盘说明

键盘共有 30 个键,分别为:存储、查询、设置、切换、↑、↓、←、→、,, 退出、 自检、帮助、数字 1、数字 2 (ABC)、数字 3 (DEF)、数字 4 (GHI)、数字 5 (JKL)、数字 6 (MNO)、数字 7 (PQRS)、数字 8 (TUV)、数字 9 (WXYZ)、数字 0、小数点、#、辅助 功能建 F1、F2、F3、F4、F5。

各键功能如下:

↑*、***↓***、***←***、***→键**: 光标移动键; 在主菜单中用来移动光标, 使其指向某个功能菜单; 在参数设置功能屏下上下键用来切换当前选项。

 ♂键:确认键:在主菜单下,按此键显示菜单子目录,在子目录下,按下此键即进入被选
 中的功能,另外,在输入某些参数时,开始输入和结束输入并使刚键入的数字有效。 退出键:返回键,按下此键均直接返回到主菜单。 存储键:用来将测试结果存储为记录的形式。 查询键:用来浏览已存储的记录内容。 设置键:按下此键直接进入"参数设置"功能屏。 切换键:保留功能,暂不用。 自检键: 在压降测试功能中做为自校功能键,测试完成后按此键实现自校。 帮助键:用来显示帮助信息。 **数字(字符)键:**用来进行参数设置的输入(可输入数字)。 小数点键:用来在设置参数时输入小数点。 #键:保留功能,暂不用。 F1、F2、F3、F4、F5: 辅助功能键(快捷键)。用来快速进入辅助功能界面或实现相应的 功能。 F1 键: 在参量测试和谐波分析屏中用来锁定测量数据, 停止刷新; F2 键: 在参量测试和谐波分析屏中用来解锁测量数据, 开始刷新: F3 键:保留功能,暂不用; F4键: 做为打印功能键用来进行数据打印; F5 键: 在结果查询屏中用来删除全部记录内容。

四、液晶界面

(一、主机液晶显示界面共十三屏,包括主菜单和十二个功能界面,下面分别加以详细介绍。

1. 在开机界面下按确定键可进入主菜单, 主菜单图四所示:

图四、主机主菜单

主菜单共有十二个可选项,分别为:参数设置、三线压降、四线压降、三线 PT 负荷、四

线 PT 负荷、CT 负荷、上传数据、结果查询、参量测试、谐波分析。当光标指向哪一个功 能选项时,哪个选项的文字就变为反白显示,可见图五界面中选中项为'卫星状态'功能, 按上下键可改变光标指向的选项。此时,按'确定'键进入选中的功能显示屏。

3. 在选中'参数设置'功能屏可用来对试品编号、计量类别、同步方式、角差符号、当前的日期和时钟时间进行设置,界面如图五所示:

PT压降负荷
试计同角设置 (F) 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1 日 1

按【左右】改变,【退出】返回主菜单

图五、参数设置屏

图中可见:有6个选项需要进行设置,包括:试品编号、计量类别、同步方式、角差符号、 设置日期、设置时间;"同步方式"有无线通讯和有线通讯两种模式可选,设置日期和设 置时间是用来对当前的时钟进行设置。

4. 三线压降界面:

此界面有两个功能:一是进行三相三线装置测试前的自校,为了保证测试精度,在开始正 常测试之前对仪器进行精度自动校准的界面,通过此界面可将仪器的温漂误差和零位漂移 误差降至最低;二是进行正常的三相三线计量装置压降的测试。结果如图六所示

PT压降负荷测试系统 紧	er5. 0000 : 1510xx	57.74V 15-10-10 5AQ 11:08:05	100%
比差: 分机(PT)	主机(Wh)	比差	
Uab=100.52V	Uab=100.52V	fab=+0.005%	
Ucb=100.61V	Ucb=100.62V	fcb=+0.007%	
角差: 分机(PT)	主机(Wh)	比差	
Φab= 0.00°	Φab= 0.00°	δab= +0.93分	
Фсb=-120.25°	Φcb=-120.26°	δcb= +0.89分	
误差:			
误差AB= 0.027%	化整AB= 0.(03%	
误差CB= 0.027%	化整CB= 0.0	03%	
测试结束			
无线状态:Ok			
始 【 办 办 】 手 测 ▲ 点 林			
按【朔定】重测,【目检	】仪准,【F4】打	印,【存储】保存	
	图六、三线压	降	

测试结果数据包括: PT 侧 AB 相电压幅值(由分机传来), CB 相电压幅值(由分机传来), Wh 侧 AB 相电压幅值(由主机测得), CB 相电压幅值(由主机测得), AB 相 PT 侧和 Wh 侧之间的角差, CB 相 PT 侧和 Wh 侧之间的角差; AB 相 PT 侧和 Wh 侧之间的比差, CB 相 PT 侧和 Wh 侧之间的综合误差及化整结果, CB 相 PT 侧和 Wh 侧之间的综合误差及化整结果。测试过程自动计数,从0开始,当累计次数满40次会自动停止,显示出测试结果屏;在测试过程中如果发现有个别异常数据,那么仪器会自动屏蔽异常数据,当连续出现异常数据时,仪器将终止测试,再从0开始计数。如果进行的功能是自校,那么测试结束后按照提示应当按下"自检"键,完成自校;如果进行的是正常的三线压降测试,那么测试结束后,按照提示可按"确定"键重新进行测试,也可选择按"F4"键进行打印,或者按"存储"键进行数据的保存。

5. 四线压降界面:

此界面有两个功能:一是进行三相四线装置测试前的自校,为了保证测试精度,在 开始正常测试之前对仪器进行精度自动校准的界面,通过此界面可将仪器的温漂误差和零 位漂移误差降至最低;二是进行正常的三相四线计量装置压降的测试。结果如图七所示: 测试结果数据包括: PT 侧 A 相电压幅值(由分机传来),B 相电压幅值(由分机传来),C 相电压幅值(由分机传来),Wh 侧 A 相电压幅值(由主机测得),Wh 侧 B 相电压幅值(由 主机测得),Wh 侧 C 相电压幅值(由主机测得),A 相 PT 侧和 Wh 侧之间的角差,B 相 PT 侧和 Wh 侧之间的角差,C 相 PT 侧和 Wh 侧之间的角差;A 相 PT 侧和 Wh 侧之间的比差, B 相 PT 侧和 Wh 侧之间的比差,C 相 PT 侧和 Wh 侧之间的比差;A 相 PT 侧和 Wh 侧之间的比差,C 相 PT 侧和 Wh 侧之间的比差;A 相 PT 侧和 Wh 侧之间的综合误差及化整结果,C 相 PT 侧和 Wh 侧之间的综合误差及化整结果。测试过程会自动计数,从0开始,当累计次数满40 次会自动停止,显示出测试结果屏;在测试过程中如果发现有个别异常数据,那么仪器会 自动屏蔽异常数据,当连续出现异常数据时,仪器将终止测试,再从0开始计数。如果进 行的功能是自校,那么测试结束后按照提示应当按下"自检"键,完成自校;如果进行的 是正常的四线压降测试,那么测试结束后,按照提示可按"确定"键重新进行测试,也可 选择按"F4"键进行打印,或者按"存储"键进行数据的保存。

PT压降负荷测试系统	Ver5.0000 No:1510xx	57.74V 15-10-10 5AQ 11:08:05
比差: 分机(PT)	主机(Wh)	比差
Ua= 40.11V Ub= 40.09V	Ua= 40.13V Ub= 40.09V	fa=+0.040% fb=+0.001%
Uc= 40.17V	Uc= 40. 18V	fc=+0.026%
角差: 分机(PT)	主机(Wh)	比差
Фа= 0.00° Фь= 120.03°	$\Phi_a = 0.00^{\circ}$ $\Phi_b = 120.04^{\circ}$	δa= +0.40分 δb= +1 32分
$\Phi_{c} = -120.22^{\circ}$	$\Phi_{\rm c} = -120.25^{\circ}$	$\delta_{c} = +0.28分$
误差:		
误差A= 0.042% 误差B= 0.038%	化整A= 0.04% 化整B= 0.04%	
医左し- 0.027%	化金いー 0.03%	
而成组来 无线状态:0k		
	- Fre-	E
按【确定】重测,【自	检】校准,【F4】打印	,【存储】保存

图七、四线压降

6. 三线 PT 负荷测试界面:

此界面用来对三相三线制的计量装置的 PT 负荷进行测试,可同时对 AB 和 CB 相进行测试。

结果如图八所示:

图中显示出如下的测试数据:

PT 端口 AB 相、CB 相的电压幅值, PT 的 A、C 各相出线的电流幅值, PT 的 A、C 各相有功功率值,各相的电压和电流之间的相角和功率因数,各相计算出的电导、电 纳和负荷。

按照提示可按"确定"键重新进行测试,也可选择按"F4"键进行打印,或者按"存储" 键进行数据的保存。

PT压降负荷	苛测试系统 Ver5.0000 No:1510xx	57.74V 15-10-10 5AQ 11:08:05	100%
三相四线P 电压 电流 有功	T负荷测试: Ua= 0.001V Ia= 0.0001A Pa= 0.00W	Uc= 0.001V Ic= 0.0001A Pc= 0.00W	
相角 功因	∠a= 0.000° PFa= 0.0001	∠c= 0.000° PFc= 0.0001	
电导 电纳 负荷	Ga= +0.010mS Ba= +0.001mS Sa= 0.00VA	Gc= +0.010mS Bc= +0.001mS Sc= 0.00VA	
测试计数: 请检查接给	0 线		

按【确定】重测,【存储】保存,【F4】打印,【退出】返回

图八、三线 PT 负荷

7. 四线 PT 负荷测试界面:

此界面用来对三相四线制的计量装置的 PT 负荷进行测试,可同时对 A、B、C 相进行测试。 结果如图九所示:

PT压降负荷测试系统 Nex5.0000 Ro:1510xx	57.74V 15-10-10 54Q 11:08:05
三相四线PT负荷测试: 电压 Ua= 0.001V Ub= 0.001V 电流 Ia= 0.0001A Ib= 0.0001A 有功 Pa= 0.00W Pb= 0.00W	Uc= 0.001V Ic= 0.0001A Pc= 0.00W
相角 ∠a= 0.000° ∠b= 0.000° 功因 PFa= 0.0001 PFb= 0.0001	∠c= 0.000° PFc= 0.0001
电导 Ga= +0.010mS Gb= +0.010mS 电纳 Ba= +0.001mS Bb= +0.001mS 负荷 Sa= 0.00VA Sb= 0.00VA	Gc= +0.010mS Bc= +0.001mS Sc= 0.00VA
测试计数: 0 请检查接线	
按【确定】重测,【存储】保存,【F4】打印	印,【退出】返回
图九、四线 PT 1	负荷

图中显示出如下的测试数据: PT 端口 A、B、C 各相的电压幅值,

PT 出口处 A、B、C 各相出线的电流幅值, PT 的 A、B、C 各相有功功率值, 各相的电压和电流之间的相角和功率因数, 各相计算出的电导、电纳和负荷。

按照提示可按"确定"键重新进行测试,也可选择按"F4"键进行打印,或者按"存储"键进行数据的保存。

8. CT 负荷测试界面:

此界面用来对计量装置的 CT 负荷进行测试,可分别对 A、B、C 相逐一进行测试。 结果如图十所示:

PT压降负荷	测试系统 Ver5.0000 No:1510xx	57.74V 15-10-10 5AQ 11:08:05	100%
CT负荷测试	:		
电压 电流 有功	Ua= 0.001 V Ia= 0.0001 A Pa= 0.00 W		
相角 功因	∠a= 0.001 ° PFa= 0.0000		
电阻 电抗 负荷	Ra=+0.000010 Ω Xa=+0.000010 Ω Sa= 0.00 VA	Sa[1A]=3113.49 VA	
测试计数:	0	5a[5A]-((65(.24 VA	
请检查接线			
		恩特	

按【确定】重测,【存储】保存,【F4】打印,【退出】返回

图十、CT 负荷

图中显示出如下的测试数据:

被测相 CT 的端口电压幅值, 被测相 CT 的电流幅值, 被测相 CT 的有功功率值, 被测相的电压和电流之间的相角和功率因数,各相计算出的电阻、电抗和负荷。 按照提示可按"确定"键重新进行测试,也可选择按"F4"键进行打印,或者按"存储" 键进行数据的保存。

9. 联机通讯界面:

此界面用来将仪器内存中所保存的各项测试数据上传到计算机,进行后台统一管理。 如图十一所示:

数据上传完毕,按【退出】键返回主菜单

图十一、上传数据

10. 波形显示界面:

图十二、波形显示

在此屏中可显示出当前各个被测模拟量的实际波形,波形实时刷新,能直观的反映出 被测信号的失真情况(是否畸变、是否截顶),本屏中显示当前显示为 Ua、Ia 的波形,用 【↑↓】键来切换不同的显示通道;可切换为 B 相电压、电流的波形,C 相电压、电流的 波形,A、B、C 三相所有的电压的波形,A、B、C 三相所有的电流的波形,A、B、C 三相 所有的电压和电流的波形;可以做为简单的示波器使用。屏幕下方显示出各相电压的有效 值、最大峰值、最小峰值、各相电流的有效值、最大峰值、最小峰值。 11.频谱分析界面:

图十三、频谱分析

如图十三所示:此屏以柱状图的形式显示出各相电压、各相电流的谐波含量分布情 况,还能显示出谐波失真度和各次谐波含量数值。通道 UA-UB-UC-IA-IB-IC 提示当前通 道(可通过←、→键来改变所选通道),1%-10%为各谐波分量百分比(当所有次数的谐 波含量都小于10%时进行放大显示,即以10%做为满刻度;当有一项以上的谐波含量大 于10%时,正常显示,即以100%做为满刻度),05-30指示的是谐波的次数,右侧数值 显示总谐波畸变率 THD、有效值和 32 次谐波。无失真的信号应显示第一次谐波(基波)。

12. 谐波测试界面:

此屏用来对被测装置的谐波含量进行测试;如图十四所示:

THD	0.00	*	0.00	×	0.00	*	0.00	1	0.00		0.00	
T∎S	0.00	V	0.00	V	0.00	V	0.0	*	0.0	A	0.0	A
01	0.0		0.0		0.0		0.00		0.00		0.00	
02	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
03	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
04	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
05	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
06	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
07	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
08	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
09	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
10	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
11	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
12	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
13	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
14	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
15	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
16	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
17	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
18	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
19	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
20	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0
21	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0

图十四、谐波测试

图中以柱状图的形式显示出某个参量的各次谐波含量(1-50次),同时还以数值的形式 显示出来。

13. 历史数据界面:

此界面用来查阅仪器内存中所保存的各项测试数据,可打印。

武汉伯恩特电力科技有限公司

如图十五所示:

PT压降负荷测试系统	Ver5.0000 No:1510xx	57.74V 15-10-10 54Q 11:08:05
总记录数:001 第00 测试时间:2015年08月	1条 【三线PT负荷) 12日09时18分22秒	1
电压 Uab= 0.001V 电流 Ia= 0.0001A 功率 Pab= +0.000W	Ucb= Ic= Pcb=	0.001V 0.0001A +0.000W
电导 Gab= +0.010mS 电纳 Bab= +0.001mS	Gcb= Bcb=	+0.010mS +0.001mS
负荷 Sab= 0.000VA	Scb=	0. 000VA

按【上下】翻页,【F5】删除,【F4】打印,【退出】返回

图十五、历史数据

此屏显示出已存储的压降测试结果,首先,显示当前记录在内存占的条数,记录保存时的 日期、时间;然后就是具体的测试数据。

按"上下"键可以切换上一条或下一条记录。按"F5"键可将所有内存清空。按"F4"键 可将当前记录打印出来。

(二)、分机界面共一屏,只有一个功能界面,下面加以详细介绍。

1. 测试界面如图十六所示:

A相:	59.285V	0.000°	388.27
B相:	59.301V	120.265°	148.54
C相:	59.300V	237.771°	266.04

图十六、分机测试

图中显示出通过无线信号同步进行测试时 PT 侧各相或相间电压幅值、与基准的夹角、实际计数数值;下侧显示出各信号的状态。

五、使用方法

1. 无线三线自校方法:

在测试之前,为了保证测量数据的准确性,最好每次都要进行仪器的自校,方法为:主机和分机的 Ua、Un、Uc 电压端子同时接到 PT 侧的 A、B、C 相电压线上;主分机的端子要一一对应,但请注意:B 相电压要接到主机和分机黑色的 Un 端子。如图十七所示:

图十七、三线压降自校接线

将天线接到相应接口。天线放置在尽量高的位置。

首先,分机开机直接进入测试界面,主机选择"三线压降"项目,按"开始"键即自动测试,记数次数累计到 60 后,自动停止。

按"自检"键可将仪器根据目前的状态校准。

2. 无线三线压降测试方法:

将分机放在 PT 侧, 主机放在 Wh 侧, 同时测量两侧的电压(主机、分机电压信号按照图 十八所示接线)。

PT 侧 A、B、C 相电压线分别接到分机的 Ua、Un、Uc 电压端子上; Wh 侧 A、B、C 相电压线分别接到主机的 Ua、Un、Uc 电压端子上。 **请注意: B 相电压要接到黑色的 Un 端子**。

图十八、三线压降测试接线

将天线接到相应接口。天线放置在尽量高的位置。

首先,分机开机直接进入测试界面,主机选择"三线压降"项目,按"开始"键即自动测试,记数次数累计到 60 后,自动结束。

可选择将测试结果打印出来,或保存在内存中。

13 武汉伯恩特电力科技有限公司 电话:17762792855 传真 027-82621016 网址: https://www.whboente.com/ 3. 四线压降自校方法:

按照图十九接线:

图十九、四线压降自校接线

将天线接到相应接口。天线放置在尽量高的位置。 首先,分机开机直接进入测试界面,主机选择"四线压降"项目,按"开始"键即自动测 试,记数次数累计到 60 后,自动停止。 按"自检"键可将仪器根据目前的状态校准。

4. 四线压降测试方法:

将分机放在 PT 侧, 主机放在 Wh 侧, 同时测量两侧的电压(主机、分机电压信号按照图 二十所示接线)。

PT 侧 A、B、C、N 相电压线分别接到分机的 Ua、Ub、Uc、Un 电压端子上;

Wh侧A、B、C、N相电压线分别接到主机的Ua、Ub、Uc、Un电压端子上。 **请注意:各相电压要按颜色接到相应的电压端子上**。 将天线接到相应接口。天线放置在尽量高的位置。 首先,分机开机直接进入测试界面,主机选择"四线压降"项目,按"开始"键即自动测 试,记数次数累计到60后,自动结束。 可选择将测试结果打印出来,或保存在内存中。

5. 三线 PT 负荷测试方法:

用主机在 PT 侧进行测试。其中电压用 PT 侧通道测量,电流用钳形电流互感器测量,按图 二十一接线:

PT 侧 A、B、C 相电压线分别接到主机的 PT 侧电压端子 Ua、Un、Uc 上;用 A、C 两把钳 形电流互感器分别接到 PT 侧 A、C 相上,注意:相别一定要对应,否则测试结果不正确。 选择"三线 PT 负荷"项目进行测试,按"开始"键即自动测试,记数次数累计到 60 后,自动结束。可打印测试结果。

6. 四线 PT 负荷测试方法:

用主机在 PT 侧进行测试。其中电压用 PT 侧通道测量,电流用钳形电流互感器测量,按图 二十二接线:

图二十二、四线 PT 负荷接线

PT 侧 A、B、C、N 相电压线分别接到主机的 PT 侧电压端子 Ua、Ub、Uc、Un 上;用三把 钳形电流互感器分别接到 PT 侧各相上,注意:相别一定要对应,否则测试结果不正确。 选择"四线 PT 负荷"项目进行测试,按"开始"键即自动测试,记数次数累计到 60 后, 自动结束。可打印测试结果。

7. CT 负荷测试方法:

用主机在 CT 端口侧进行测试。其中电压用 A 相电压通道测量,电流用 A 相钳形电流互感器测量,按图二十三接线:

图二十三、CT 负荷测试接线

注意:相别一定要对应,否则测试结果不正确。 选择"CT负荷"项目进行测试,按"开始"键即自动测试,记数次数累计到60后,自动 结束。可打印测试结果。

六、注意事项

- 1. 为了达到最高的测试精度,请在使用前要加电预热 5 分钟。
- 2. 测量接线一定要严格按说明书操作。
- 3. 测试之前一定要认真检查接线是否正确。
- 4. 最好使用有地线的电源插座。
- 5. 不能在电压和电流过量限的情况下工作。
- 6. 钳形电流互感器要保持钳口的清洁,避免因污秽影响钳子的测试精度。

- 7. 仪器在室外使用时,尽可能避免或减少阳光对液晶屏直接曝晒。
- 8. 仪器最好等用完电后再进行充电,充电时间最好在6小时以上。
- 9. 在测量过程中一定不要直接接触被测线路的金属部分,以避免被电击伤。

第二部分 多功能用电检查仪

一、功能特点

- 1、仪器是集电能表校验、电参量测试和检测电网中发生波形畸变、电压波动和三相不平 衡等电能质量问题为一体的高精度测试仪器。
- 不停电、不改变计量回路、不打开计量设备情况下,在线实负荷检测计量设备的综合 误差。
- 3、精确测量电压,电流,有功功率,无功功率,相角,功率因数,频率等多种电参量, 从而计算出测试设备回路的测量误差。
- 4、可选配虚拟负载箱,当用户无负荷或超低负荷时,也能对电表进行准确的测量。
- 5、可显示被测电压和电流的矢量图,用户可以通过分析矢量图得出计量设备接线的正确 与否。同时,在三相三线接线方式时,可自动判断48种接线方式;追补电量自动计 算功能,方便使用人员对接线有问题的用户计算追补电量。
- 6、电流回路可使用钳形互感器进行测量,操作人员无须断开电流回路,就可以方便、安全的进行测量。
- 7、可校验电压表、电流表、功率表、相位表等指示仪表以及三相三线、三相四线、单相的1A、5A的各种有功和无功电能表。
- 8、可采用光电、手动、脉冲等方式进行电能表校验。
- 9、测量分析公用电网供到用户端的交流电能质量,可测量分析:频率偏差、电压偏差、 电压波动、三相电压允许不平衡度和电网谐波。
- 10、可显示单相电压、电流波形并可同时显示三相电压、电流波形。
- 11、负荷波动监视:测量分析各种用电设备在不同运行状态下对公用电网电能质量造成的 波动。记录和存储电压、电流、有功功率、无功功率、视在功率、频率、相位等电力 参数。
- 12、 电力设备调整及运行过程动态监视,帮助用户解决电力设备调整及投运过程中出现 的问题。
- 13、可选配条码扫描器,对电表的条码进行自动录入。
- 14、电能表的 485 通讯接口进行检测,并能完成现场校验多功能(智能)电能表的工作需求,可根据电表中已设置的需量周期和滑差的时间对需量进行误差校验。
- 15、具备万年历、时钟功能,实时显示日期及时间。可在现场校验的同时保存测试数据和结果,并通过串口上传至计算机,通过后台管理软件(选配件)实现数据微机化管理;预留 USB 端口,可以将存储数据直接转存到 U 盘。
- 16、采用大屏幕进口彩色液晶作为显示器,中文图形化操作界面并配有汉字提示信息、多参量显示的液晶显示界面,人机对话界面友好
- 17、体积小、重量轻,便于携带,既可用于现场测量使用也可用做实验室的标准计量设备。

二、技术指标

1、输入特性

电压测量范围: 0~400V, 57.7V、100V、220V、400V 四档自动切换量程。

电流测量范围: 0~5A,内置互感器分为 5A(CT)档。钳形互感器为 5A(小钳)、25A(小

钳)、100A(中钳)、500A(中钳)、400A(大钳)、2000A(大钳)六个档
位。(其中中型钳表和大型钳表为选配)

相角测量范围: 0~359.999°。 频率测量范围: 45~55Hz。

2、准确度

计量校验部分:

电压: ±0.05% (±0.1%) 电流: ±0.05% (±0.1%) (钳形互感器±0.5%) 有功功率: ±0.05% (±0.1%) (钳形互感器±0.5%) 无功功率: ±0.3% (±0.5%) (钳形互感器±1.0%) 有功电能: ±0.05% (±0.1%) (钳形互感器±0.5%) 无功电能: ±0.3% (±0.5%) (钳形互感器±1.0%) 频率: ±0.05% (±0.1%) 相位: ±0.2°

3、电能质量

基波电压和电流幅值:基波电压允许误差≤0.5%F.S.;基波电流允许误差≤1% F.S.

基波电压和电流之间相位差的测量误差: ≤0.5° 谐波电压含有率测量误差: ≤0.1% 谐波电流含有率测量误差: ≤0.2% 三相电压不平衡度误差: ≤0.2%

4、工作温度

工作温度: -10℃~+40℃

5、绝缘

(1)、电压、电流输入端对机壳的绝缘电阻≥100MΩ。

(2)、工作电源输入端对外壳之间承受工频 1.5KV (有效值),历时 1 分钟实验。

6、标准电能脉冲常数

标准电能脉冲常数:内置互感器常数(FL)=10000 r/kW • h , 钳型互感器常数 (FL):

5A	25A	100A	500A	400A	2000A
10000r/KW•h	2000 r/KW •h	500 r/KW•h	100 r/KW•h	125 r/KW•h	25 r/KW•h

7、重量

重量: 2Kg

8、体积

体积: 32cm×24cm×13cm

三、结构外观

1、外型尺寸及面板布置

仪器外形正视如图一:

仪器面板下方的左侧是液晶显示器,右侧是按键区;上方左侧为接线端子部分,包 括: 电压输入端子 UA、UB、UC、UN; 电流输入端子 Ia+、Ia-、Ib+、Ib-、Ic+、Ic-(其 中 Ia+、Ib+、Ic+为电流流入端, Ia-、Ib-、Ic-为电流流出端; 钳形电流互感器接口(A

传真 027-82621016 网址: https://www.whboente.com/ 武汉伯恩特电力科技有限公司 电话: 17762792855

相钳、B相钳、C相钳); USB端口,向右为接地端子、光电及脉冲信号接口和 232 串行口 (用于上传保存的数据至计算机);最右端为充电器接口(用于连接充电电源)和仪器工 作开关;下方为打印机。

仪器须及时充电,避免电池深度放电影响电池寿命,正常使用的情况下尽可能每天 充电(长期不用最好在两周内充一次电),以免影响使用和电池寿命,每次充电时间应在 6小时以上。

• 仪器的配件箱尺寸,如图二所示:

2、键盘操作

键盘共有 30 个键,分别为:存储、查询、设置、切换、↑、↓、←、→、,, 退出、 自检、帮助、数字 1、数字 2 (ABC)、数字 3 (DEF)、数字 4 (GHI)、数字 5 (JKL)、数字 6 (MNO)、数字 7 (PQRS)、数字 8 (TUV)、数字 9 (WXYZ)、数字 0、小数点、#、辅助 功能建 F1、F2、F3、F4、F5。

各键功能如下:

- ↑、↓、←、→键:光标移动键;在主菜单中用来移动光标,使其指向某个功能菜单,按 确认键即可进入相应的功能;在参数设置功能屏下上下键用来切换当前选项,左右 键改变数值。
- ♂键:确认键;在主菜单下,按此键即进入被选中的功能,另外,在输入某些参数时,开 始输入和结束输入。
- **退出键:**返回键,非**参数**输入状态时,按下此键均直接返回到主菜单。在参数输入的过程 中不起作用。
- 存储键:用来将测试结果存储为记录的形式。

查询键:用来浏览已存储的记录内容。

设置键:在主菜单按下此键,直接进入参数设置屏。

切换键:出厂调试时生产厂家使用,用户不需用到此键。

自检键:保留功能,暂不用。

帮助键:用来显示帮助信息。

数字(字符)键:用来进行参数设置的输入(可输入数字或字符),与手机的输入模式相似,连续按下时可将要输入的字符在数字和字母之间切换。

小数点键:用来在设置参数时输入小数点。

#键:保留功能,暂不用。

F1、F2、F3、F4、F5:辅助功能键(快捷键)。用来快速进入辅助功能界面或实现相应的功能。在有些功能界面(如:电气测试、矢量分析、波形显示等界面)F1和F2用来实现屏幕的锁定和解锁功能。F4键在有些功能界面实现测试结果打印功能。

3、液晶界面

液晶显示界面主要有十三屏,包括主菜单(开机即进入)、十二个功能界面,显示内容丰富。

(1) 开机界面

图三、主菜单

当开机后显示图三所示的主菜单界面。屏幕顶端一行显示状态参量,包括:程序版本号、电压档位、电流输入方式、日期时间、电池剩余电量(用户可根据此数值来判断是否需要为仪器充电)。中部为功能菜单选项,共十二项,包括:参数设置、电气

测试、电表校验、走字试验、矢量分析、变比测试、测试_485、波形显示、频谱分析、 谐波测试、历史数据、系统校准。通过↑、↓、←、→键进行选择,按确定键进入相 应功能界面;屏幕下方为提示栏,为用户进行简单的操作提示,方便用户正确操作。

(2) 参数设置界面

电能表现场校验系统 Ver3.3005 No.12933	57.74V 5ACT	13-01-15 22:17:01
了 01. PT变比:0001.00		
02.CT变比:0001.00		
03. 电表常数:10000.00		
04. 设定圈数:05		
05. 接线方式: 四线有功		
06. 输入方式:脉冲【光电】		
07. 电流输入:5A【小钳】		
08.设置日期:2020-09-03		
09.设置时间:21:45:50		
10. 电表编号:200000		
11.485_规约:DL645-1997版		
12.485_速率:9600Bps		

按【回车】修改, 【退出】返回

图四、参数设置屏

如图四所示:参数设置界面用于调整试验前所需要确定的数据。包括: PT 变比、 CT 变比、电表常数、设定圈数、接线方式、输入方式、电流输入、设置日期、设置时 间、电表编号。

- PT 变比 一 当进行高压计量直接测试时,用来输入高压计量表计所接的电压互感器比值,从而在电气测试中的一次参量中可直接换算到一次侧的电压值;设置时,先按【确定】键进入修改状态,此时本项参数变成红色显示,再按下相应的数字键输入所需的数字,最后按【确定】键完成设置。
- CT 变比 一 分两种情况;当进行高压计量直接测试时,用来输入高压计量表计所接的电流互感器比值,从而在电气测试中的一次参量中可直接换算到一次侧的电流值;当进行低压计量表计直接从 CT 一次侧取样进行电表校验时,用来输入计量表计所接的电流互感器比值,才能完成正常的校验;设置时,先按【确定】键进入修改状态,此时本项参数变成红色显示,再按下相应的数字键输入所需的数字,最后按【确定】键完成设置。

电表常数 一 指被测表的标准电能脉冲常数,输入范围为 0~100000;设置时,先 按【确定】键进入修改状态,此时本项参数变成红色显示,再按下相应的数字键 输入所需的数字,最后按【确定】键完成设置。

设定圈数 ― 指校验周期,即几圈(或几个脉冲)计算一次误差;先按【确定】

键进入修改状态,此时本项参数变成红色显示,再按下相应的数字键输入所需的 数字,最后按【确定】键完成设置。

- 接线方式 指被测表计的类型,包括:三线有功、三线无功、四线有功、四线 无功四种方式,用【←】、【→】键进行切换;
- 输入方式 指被测表脉冲取样方式,包括:脉冲(光电)方式和手动方式两种, 用【←】、【→】键进行切换;注意,用不同的脉冲取样方式时一定要将本参 数设置为与之相应的方式,否则测试可能不正常;
- 电流输入 指电流的取样方式以及不同取样方式下电流量程的选择,用【←】、 【→】键进行切换;共包括: 5A【内部 CT】、5A【小钳】、25A【小钳】、100A 【中钳】、500A【中钳】、400A【大钳】、2000A【大钳】7种方式,其中 5A【内 部 CT】指内置电流互感器输入方式,此种方式精度高,但在现场时电流接入 比较麻烦,一般在试验室采用此种方式;其它 6 中带钳的指钳形互感器输入 方式,本仪器共支持 3 种钳表的使用,标准配置为小钳表(开口圆形,直径 为8毫米,可选择 5A 和 25A 两种档位),第二种为中型钳表(开口圆形,直 径为 50毫米,可选择 100A 和 500A 两种档位),第三种为大型钳表(开口长 园形,最长端为 125毫米,宽 50毫米),钳表方式的优点是现场接入方便,

不需断开电流回路,但精度较低。

- 表号 一 人为输入编号用于区分被试品结果,以便在查阅时不会将多组结果混淆, 表号可为数字或字母,最多输入 12 位。
- (3) 电气测试界面

此屏显示出当前测量的三相电压幅值(Ua、Ub、Uc)、三相电流幅值(Ia、Ib、Ic)、 三相电压电流之间的夹角(Φa、Φb、Φc)、三相有功功率数值(Pa、Pb、Pc)、三相 无功功率数值(Qa、Qb、Qc)、三相视在功率数值(Sa、Sb、Sc),以及总有功功率、 总无功功率、总视在功率、实测频率、总功率因数。如果接线方式为三相三线时,电 压 Ua 表示 Uab 参量、Uc 表示 Ucb 参量。

当按下 F4 键时,此屏变换为显示一次参量值,所显示的数据都是根据 PT 变比和 CT 变比折算到互感器一次侧的数值。

按下 F1 键可锁定当前显示的数据,按 F2 键变为刷新状态。

(4) 电表校验界面

电能表现场校验系统 Ver3.3005 No:12933	57 54	74V 13-01 _CT 22:17	-15 :01
误差统计:	输入参数:		
误 差 1:	P T 变比: 1	1.0	
误 差 2:	C T 变比: 1	1.0	
误 差 3:	电表常数: 1000	0. 00	
误差4:	设置圈数: 10		
误 差 5:	电表类型: 四线	有功	
平均误差:	输入方式:光电	【脉冲]
标偏估计:	电表编号: 1293	33	
当前误差:	测试参数:		
算定脉冲:	Ua= 0.0 V	Ia=	0.00 A
实测脉冲:	Ub = 0.0 V	Ib=	0.00 A
当前图数-	0c = 0.0 V	Ic=	0.00 A
	Φa= +0.0 °	Pa=	+0.0 W
当即误差:	Фb= +0.0 °	Pb=	+0.0 ₩
累计电能:	$\Phi_{\rm C} = +0.0$	Pc=	+0.0 ₩
按【存储】保存,【F4】打	印,【退出】返回		

图六、电表校验屏

电表校验屏如图六所示,此屏分为四部分数据:误差统计部分、当前误差部分、 输入参数部分、测试参数部分;

误差统计部分:显示出误差 1、误差 2、误差 3、误差 4、误差 5 连续记录的最近 五次误差,平均误差(最近五次误差的平均值),由最近五次误差计算得来的标准偏差 估计值;

当前误差部分:显示出算定的标准脉冲(此参量为内部计算用,用户不需理解)、 实测脉冲(此参量为内部计算用,用户不需理解)、当前圈数、当前误差(最后一次的 误差值)、累计电能;

输入参数部分:显示出设置的 PT 变比和 CT 变比值,当前设定的电表常数、设置 圈数、电表类型、输入方式、电表编号;当误差不正常时,首先要检查输入参数部分 的设置是否正确,这些参数直接影响测试结果的准确性。

25

武汉伯恩特电力科技有限公司 电话: 17762792855 传真 027-82621016 网址: https://www.whboente.com/

校验完成后,按【存储】键可将测试结果以记录的形式保存。

(5) 电表校验-走字试验界面

按【回车】清零, 【退出】返回主菜单

图七、走字试验屏

此屏显示出从进入此界面开始到当前时刻的累计有功电能,进入后记度器自动开始走字,当按下【确定】键后数据清零,重新开始走字,显示出当前累计的电能数值; 在此功能屏下可用来进行电表的走字试验,与表记记度器对比,防止换铭牌或齿轮的 窃电手段。

(6) 矢量分析界面-三相四线

图八、矢量分析屏一三相四线

如图八所示,在屏幕的左上部分显示出三相四线制计量装置的实测矢量六角图, 同一个坐标系中三相电压、三相电流六个量的矢量关系;在屏幕的右上部分显示出三 相电压、三相电流的幅值和各个量以 Ua 为参照量的的相位角;屏幕的下半部分是用来 显示接线结果的分析情况,包括:相序、接线判断、错接线更正系数,对于三相四线 制的接线不进行矢量图的分析,也不提供追补电量的更正系数,用户可以通过此屏中 的矢量图直观的看出三相四线计量装置的接线是否正确,各相负荷的容、感性关系, 上图所示为标准阻性负载时接线全部正确情况下的向量图。

(7) 矢量分析界面-三相三线

图九、矢量分析屏一三相三线

如图九所示: 在屏幕的左上部分显示出三相三线制计量装置的实测矢量六角图, 同一个坐标系中两个电压参量(Uab、Ucb)、两个电流参量(Ia、Ic)四个量的矢量关 系; 在屏幕的右上部分显示出电压 Uab 和 Ucb、电流 Ia 和 Ic 的幅值和各个量以 Ua 为 参照量的的相位角; 屏幕的下半部分是用来显示接线结果的分析情况,包括: 相序、 接线判断、错接线更正系数,根据不同的负荷情况功率夹角的不同分 4 种角度范围(感 性-5~55、感性 55~115、容性-5~-65、容性-65~-125)对各 48 种接线方式 进行结果判定,上图所示为标准阻性负载时接线全部正确情况下的向量图,由于纯阻 性负载的功率夹角为 0°,属于-5~55 的范围,因此我们要看接线分析的第一行感性 (-5~55)的结果,另外三行的分析结果无效;图中接线判断中的"正"表示电压是 正相序,如为逆相序应显示"负";"Ua Ub Uc"表示电压接线是应为"Ua Ub Uc"的位 置上所接的是"Ua Ub Uc"电压接线正确;"+la +lc"表示电流接线应为"la lc"的 位置上所接的是"la lc"相别正确,"+"表示极性也都是正确的;更正系数为"1" 表示接线正确,电能计量值不需更正,如果接线不正确的情况下结果中会给出具体的 补偿系数(根据不同种类的接线错误可能为数值,也可能为公式)。具体的接线方式判 定结果分析表见附件。

(8) 变比测试界面

电能表现场校	验系统 Ver3.000 No:12933		57.74V 5ACT	13-01-15 22:17:01
电流选择:				
一次电流:	C相500A【中针	#]		
二次电流:	固定接A相5A	【小钳】		
电流测试:				
一次电流:	0. 000A			
二次电流:	0. 000A			
C T 变比:				
测试变比:	0.00= 🕻	0A/5A]		
测试夹角:	0.0 •			
一次电流钳接	tC相,【参数设	置】中选择	和流档位	

图十、变比测试屏

用来进行低压计量用电流互感器变比的检测,屏中首先给出接线提示:一次电流 用 C 相钳表进行测量,同时显示出当前选择的钳表形式和档位(用户可根据被测互感 器的实际电流情况选择不同的钳表,在不超量限的情况下尽可能的选择最接近的电流 档位),注意:钳表的使用和参数设置中电流档位的选择一定要对应,否则会造成测试 结果不正常的情况,例如:用户使用口径为 50 毫米的钳表进行测量时,本应在 100A 【中钳】和 500A【中钳】两种量程中选择,但用户错误的选择了 400A【大钳】或 2000A 【大钳】中的一种,就会造成测试结果不正常;屏中还显示一次侧实测电流值、二次 侧实测电流值、测试变比值、测量夹角(通过夹角可判定互感器的一次侧和二次侧是 否极性相同、是否相别一致;如果夹角为 0°左右,则说明互感器一次和二次同极性 且同相别;如果夹角为 180°左右,则说明互感器一次和二次同相别但极性反;如果 夹角为 60°、120°、240°或 300°左右的数值,则说明相别和极性都可能反)。

(9) 测试_485 界面

这个界面用来对全电子式多功能电能表进行 485 通讯接口正常与否和各个功能参数 的测试;

电能表	现场校验系统 🖁	er3.3002 o:131033	57.74V 5ACT	13-01-15 22:17:01
	有功电能(+)	有功电能(-)	无功电能(+)	无功电能(-)
总电量	008222.50kWh	000000.00kWh	000806.87kvarh	000000.00kvarh
费率01	001287.00	000000.00	000085.45	000000.00
费率02	002008.10	000000.00	000154.84	000000.00
费率03	002880.62	000000.00	000260.90	000000.00
费率04	002046.78	000000.00	000305.68	000000.00
费率05	000000.00	000000.00	000000.00	000000.00
费率06	000000.00	000000.00	000000.00	000000.00
费率07	000000.00	000000.00	000000.00	000000.00
费率08	000000.00	000000.00	000000.00	000000.00
费率09	000000.00	000000.00	000000.00	000000.00
费率10	000000.00	000000.00	000000.00	000000.00
费率11	000000.00	000000.00	000000.00	000000.00
费率12	000000.00	000000.00	000000.00	000000.00
费率13	000000.00	000000.00	000000.00	000000.00
费率14	000000.00	000000.00	000000.00	000000.00
费率和	008222.50	000000.00	000806.87	000000.00
发送数据:	68 99 99 99 99 99	99 99 68 01 02	2 43 C3 6F 16	
接收数据:	68 52 00 00 00 00	00 68 81 06 43	3 C3 C3 44 B5 33 91	E 16

【需量_F2】【电测_F3】

图十一、测试 485 电能

【状态_F4】

按 F2 显示各费率点及最大功率需量。

【电能_F1】

电能表现场校验系统 Ver3.3002 No:131033 57.74V 5A CT 100% 22:17:01 正向有功需量 反向有功需量 正向无功需量 反向无功需量 最大需量 00.8745kW 00.0000 00.4375kvar 00.0040kvar 需量01 00.0000 00.0000 00.0000 00.0000 需量02 00.8705 00.0000 00.0000 00.0000 需量03 00.8745 00.0000 00.4375kW 00.0040 需量04 00.0000 00.0000 00.0000 00.0000 需量05 00.0000 00.0000 00.0000 00.0000 需量06 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 需量07 需量08 00.0000 00.0000 00.0000 00.0000 00.0000 需量09 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 需量10 00.0000 00.0000 00.0000 00.0000 需量11 需量12 00.0000 00.0000 00.0000 00.0000 00.0000 00.0000 需量13 00.0000 00.0000 00.0000 需量14 00.0000 00.0000 00.0000 发送数据: 68 99 99 99 99 99 99 68 01 02 43 D3 7F 16 接收数据: 68 52 00 00 00 00 00 68 81 05 43 D3 78 BA 33 23 16

图十二、测试 485 需量

按 F3 可调三相电压、电流、有功功率、无功功率、功因数。

【电测_F3】【状态_F4】

电	电能表现场校验系统 Ver3.3002 No:131033						13-01-15 22:17:01
e C	A_相 3_相 2_相	电压(V) 0100 0000 0099	电流(A) 05.02 00.00 05.02	有功(W) 00438.7 00000.0 00433.6	无功(kVa 00.25 00.00 00.25	r)功因 0.868 0.000 0.866	总功因 0.999

发送数据: 68 99 99 99 99 99 99 68 01 02 43 D3 7F 16 接收数据: 68 52 00 00 00 00 00 68 81 05 43 D3 78 BA 33 23 16

【电能_F1】【需量_F2】【电测_F8】【状态_F4】

图十三、测试_485 电测

按 F4 显示现场表的工作状态如最近编程时间、需量清零时间、编程次数、需量清零 次数、电池工作时间、电表日期、系统时间、最大需量周期、滑差时间、自动抄表日期等。

电能表现场校验系统 No:131033	57.74V 5A_CT	13-01-15 22:17:01	100%
电表运行状态: 1.最近编程时间:07年23日11时06分 2.需量清零时间:00月00日00时00分 3.编程 次数:0000次 4.需量清零次数:0000次 5.电池工作时间:147992分钟 6.电表日期:13年10月16日星期03 7.系统时间:09时27分34秒 8.最大需量周期:15分钟 9.清差时间:01分钟 10.自动抄表日期:01日00时 11.电表运行状态:00H 抄表方式:自动有功电能 电池电压状态:正常	b方向:♪	E向	
发送数据: 68 99 99 99 99 99 99 68 01 02 43 e5 91 16 接收数据: 68 52 00 00 00 00 06 88 1 06 43 e5 39 44 【电能 F1】【需量 F2】【电测 F3】【状态	56 3a de F4]	= 16	
图十四、测试_485 状	态		15-1

(10) 波形显示界面

如图十五所示:在此屏中可显示出当前各个被测模拟量的实际波形,波形实时刷新,能直观的反映出被测信号的失真情况(是否畸变、是否截顶),本屏中显示当前显示为 Ua、Ia 的波形,用【↑↓】键来切换不同的显示通道;可切换为 B 相电压、电流的波形,C 相电压、电流的波形,A、B、C 三相所有的电压的波形,A、B、C 三

相所有的电流的波形,A、B、C 三相所有的电压和电流的波形;可以做为简单的示波器使用。屏幕下方显示出各相电压的有效值、最大峰值、最小峰值、各相电流的有效值、最大峰值、最小峰值。

图十五、波形显示屏

(11)频谱分析界面

如图十六所示:此屏以柱状图的形式显示出各相电压、各相电流的谐波含量分布情况,还能显示出谐波失真度和各次谐波含量数值。通道 UA-UB-UC-IA-IB-IC 提示当前通

道(可通过←、→键来改变所选通道),1%-10%为各谐波分量百分比(当所有次数的谐 波含量都小于10%时进行放大显示,即以10%做为满刻度;当有一项以上的谐波含量大 于10%时,正常显示,即以100%做为满刻度),05-30指示的是谐波的次数,右侧数值 显示总谐波畸变率 THD、有效值和32次谐波。无失真的信号应显示第一次谐波(基波)。

(12) 谐波分析-电压谐波界面

如图十七所示:此屏显示各相电压和电流的谐波含量,从左到右依次为A相电压(用 黄色来显示)、B相电压(用绿色来显示)、C相电压(用红色来显示)、A相电流(用黄 色来显示)、B相电流(用绿色来显示)、C相电流(用红色来显示),其中THD为各相的 电压波形畸变率(即谐波失真度),RMS为各相电压和电流的有效值,01次为基波电压 和基波电流(用实际幅值表示),以下依次为其它各次谐波的数值,以有效值形式和基 波的百分比两种形式表示,以数据表的形式显示1-63次电压谐波。可通过↑↓键来切 换低21次(01-21)和中21次(22-42)、高21次(43-63)谐波含量的表格。

电角	老表 明	见场校	验系	统 Not	3, 3005 12933				57.74V 5A_CT	13-01-1 22:17:0	15	00%
THD	0.00	*	0.00	x	0.00	x	0.00		0.00		0.00	
T∎S	0.00	V	0.00	V	0.00	V	0.0	8	0.0	8	0.0	A
01	0.0		0.0		0.0		0.00		0.00		0.00	
02	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
03	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0. 0%
04	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0.0%	0.00	0. 0%
05	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0.0%	0.00	0.0%
06	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0.0%	0.00	0.0%
07	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0.0%	0.00	0. 0%
08	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
09	0.0	0.0%	0.0	0. 0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0. 0%
10	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0. 0%
11	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0. 0%
12	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0. 0%	0.00	0.0%
13	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0. 0%
14	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0.0%	0.00	0.0%
15	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
16	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0. 0%
17	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0. 0%	0.00	0.0%	0.00	0. 0%
18	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
19	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
20	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
21	0.0	0.0%	0.0	0.0%	0.0	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%
摧	FR1	1 编言	7、 排	7 F	K1 a	ケ 本 若	团.	日見井	1 版	同		

图十七、谐波测试屏

(13)历史数据界面

如图十八所示,此屏显示内存中已存储记录的各项数据,包括:总记录条数、当前查阅的记录排号、测试的日期时间、被测表号、实测电能误差、接线方式、三相电压和电流相角数值、三相电压和电流向量图、三相电压幅值、三相电流幅值、三相有功功率、三相无功功率。

按[存储]键可以将数据文件转存到 U 盘。

电能表现场校验系统 Not 12933	57.74V 13-01-15 5A_CT 22:17:01
总030条 第001条 日期:2013年01月02日 时间:17时51分 表号:123456 误差:-0.0035% 方式:四线有功 ΦUa= 0.0° ΦIa= 0.2° ΦUb=120.0° ΦIb=120.1° ΦUc=240.0° ΦIc=240.0°	300 10 10 10 10 10 10 120 180
Ua= 99.82V Ia= 5.001A Pa=	496.6W Qa= 9.0Var
Ub= 99.82V Ib= 5.001A Pb=	4 96.6 W Qb= 2.0Var
	106 6W 0c = 2 0 Var

按[存储]转存U盘, [F4]打印, [F5]删除记录, [退出]返回

图十八、历史数据屏

(14) 系统校准界面

此界面为调试专用界面,仅供出厂前调试用,用户无法进入。

四、使用方法

1、电表接线原理

(1) 三相三线和三相四线测量原理简介:

三相三线制测量是指使用两个功率元件实现对三相线路的测量,相当于在电路中分别接入两只电流表(串联在A、C两相)、两只电压表(分别并联在AB之间和CB之间)和两只功率表(电流线圈串联在A、C相,电压线圈并联在AB和CB之间),其测量原理如图十九所示

图十九、三相三线计量原理图

三相四线制测量是指使用三个功率元件实现对三相线路的测量,相当于在电路中分别接入三只电流表(分别串联在A、B、C三相)、三只电压表(分别并联在A、B、C各相对N相之间)和三只功率表(电流线圈分别串联在A、B、C相,电压线圈分别并联在A、B、C对N之间),其测量原理如图二十所示

图二十、三相四线计量原理图

2、三相四线低压电能表经钳表接入接线

三相四线制低压电能表经钳形互感器接线校验如下图二十一

先将电压线首端的插棒按颜色分别接到仪器面板相应的 A、B、C、N 电压端子上, 电压线末端的鳄鱼夹分别接到被测表表尾的 A、B、C、N 相电压线上;再将各相的钳形 互感器插到有相应标号的接口上,然后用钳形互感器卡住对应相的电流线即可。(注意: 极性一定要接正确,钳形电流互感器标有 A、B、C 的一面为电流流入端,N 的一面为流 出端)。

打开仪器开关,先按照被测表参数将"参数设置"屏中相应的参数设置正确,然 后,即可进入相应的界面进行测试。

3、三相四线低压电能表经内部 CT 接入测试

三相四线低压电能表经内部 CT 接入接线校验如图二十二所示:

图二十二、三相四线直接接入测试

先将电压线首端的插棒按颜色分别接到仪器面板相应的 A、B、C、N 电压端子上, 电压线末端的鳄鱼夹分别接到被测表表尾的 A、B、C、N 相电压线上;将电流线的首 端插棒按颜色接到仪器面板相应的电流端子上,有标记的接电流正端,无标记的接电 流负端,电流线末端的鳄鱼夹(或插片)接到端子排两侧(I+接到远离表计侧,I-接到 靠近表计侧),然后将端子排的连片打开。

打开仪器开关,先按照被测表参数将"参数设置"屏中相应的参数设置正确,然 后,即可进入相应的界面进行测试。

目前有这种端子排的接线方式已经很少见,对于没有端子排的只能采取钳表接入 法。

4、三相三线高压电能表经钳表接入接线

三相三线高压电能表经钳表接入接线如图二十三所示:

图二十三、三相三线高压计量表计经钳表接入测试

先将电压线首端的黄、绿、红插棒分别接到仪器面板相应的 A、N、C 电压端子上(即 黄色插棒接到电压端子 UA 上,绿色插棒接到电压端子 UN 上,红色插棒接到电压端子 UC 上,UB 端子不接线),电压线末端的黄、绿、红鳄鱼夹按颜色分别接到被测表表尾的 A、B、C 三相电压线上;再将 A、C 两相的钳形互感器插到有相应标号的接口上,然后 用钳形互感器卡住对应相的电流线即可。(注意:极性一定要接正确,钳形电流互感器 标有 A、C 的一面为电流流入端,N 的一面为流出端)。

打开仪器开关,先按照被测表参数将"参数设置"屏中相应的参数设置正确,然 后,即可进入相应的界面进行测试。

5、三相三线高压计量表计经内部 CT 直接接入接线

三相三线高压电能表经内部 CT 接入接线如图二十四所示:

图二十四、三相三线高压计量表计直接接入测试

先将电压线首端的黄、绿、红插棒分别接到仪器面板相应的 A、N、C 电压端子 上(即黄色插棒接到电压端子 UA 上,绿色插棒接到电压端子 UN 上,红色插棒接到 电压端子 UC 上,UB 端子不接线),电压线末端的黄、绿、红鳄鱼夹按颜色分别接到 被测表表尾的 A、B、C 三相电压线上;将电流线的首端 A、C 两相插棒按颜色接到仪 器面板相应的电流端子上(B 相线不用),有极性端标记的接电流正端,无标记的接电 流负端,电流线末端的鳄鱼夹(或插片)接到端子排两侧(I+接到远离表计侧,I-接到 靠近表计侧),然后将端子排的连片打开。

打开仪器开关,先按照被测表参数将"参数设置"屏中相应的参数设置正确,然 后,即可进入相应的界面进行测试。

内部 CT 直接接入的方式能达到最高的测试精度,但接线比较繁琐。

6、单相接线

单相接线方式与三相四线制接线相同,只需将电压、电流线接入仪器的同一相的电 压和电流端子即可(因接线简单,不再给出接线图)。

7、测量谐波

测量电压谐波时只须输入电压信号,电流谐波时只须输入电流信号。

8、电表脉冲信号的获取方法

在进行电能表校验时,需要获取被测电能表的电能脉冲信号。有3种方式可以获得 此信号:光电采样器、手动开关、专用脉冲测试线;针对不同种类的电能表,可以通过不 同的方式来进行测试。下面给出几种常用的电能表电能脉冲的获取方式。

(1)、对于机械式电能表,可以通过光电采样器进行脉冲的自动获取;将光电采样器 设定为发光状态(通过按下光电采样器线中部方盒上的红色按钮来切换),将三个发光二 极管所发出的光束对准被校表的铝盘中央,适当调整光电采样器相对于表盘的位置,同时 根据对黑斑的敏感程度调节光电采样器线中部方盒中央的旋钮以改变采样敏感度,防止误 采和漏采,最终达到正常采样的状态。

(2)、对于机械式电能表,也可以通过手动开关进行脉冲的人工获取;操作人员手握 手动开关,拇指轻放在手动开关按钮上,目视铝盘,当铝盘上的黑斑转动到电表正面的中 央刻度时,迅速按一下按钮,此时,仪器记录下校验周期的起始位置,操作人员连续观察 铝盘的转动,当黑斑到来的次数达到设定的校验圈数时,再次迅速按下按钮,完成校验, 仪器会自动计算出电表误差。由于有人为因素参与到脉冲的取样,会造成误差的不稳定度, 可适当增加设定的校验圈数来消除。

(3)、对于电子式电能表,可以通过光电采样器进行脉冲的自动获取;将光电采样器 设定为不发光状态(通过按下光电采样器线中部方盒上的红色按钮来切换),将光电采样 器的接收头(位于三个发光二极管的中央)对准被测表的脉冲灯,适当调整光电采样器相 对于表盘的位置,同时根据对脉冲灯发光的敏感程度调节光电采样器线中部方盒中央的旋 钮以改变采样敏感度,防止误采和漏采,最终达到正常采样的状态。

(4)、对于电子式电能表,还可以通过专用脉冲测试线进行脉冲的自动获取;仪器随 机配备了一条专用脉冲测试线,顶端有 4 个鳄鱼夹,分别标有:VCC (辅助电源)、TESE-IN (信号输入)、FL-OUT (标准脉冲输出)、GND (地)。使用人员需要根据电能表电能脉冲 的输出方式不同 (包括有源输出和无源输出两种方式)选择不同的信号线进行取样,当被 测表脉冲信号为有源输出方式时,用标有"信号"和"地"的鳄鱼夹进行取样,标有"信 号"的鳄鱼夹接到被测表端子排标有"有功正"的端子,标有"地"的鳄鱼夹接到被测表 端子排标有"有功负"或"公共端"的端子。当被测表脉冲信号为无源输出方式时,用标 有"VCC"和"信号"的鳄鱼夹进行取样,标有"VCC"的鳄鱼夹接到被测表端子排标有 "有功正"的端子,用标有"信号"的鳄鱼夹接到被测表标有"有功负"或"公共端"的

端子。

9、仪器送检时脉冲测试线使用方法

根据计量检定规程的要求,电能表现场校验仪在出厂时应进行检定,在投入使用后还应定期进行复检。在送检时用标准设备对校验仪输出的标准电能脉冲进行检测。本测试仪的标准电能脉冲由专用脉冲线中标有 FL 的鳄鱼夹和标有 GND 的鳄鱼夹输出(各档位具体常数参见"技术指标"中的第6项一标准电能脉冲常数表格),注意:只有在"电表校验"、"走字试验"、"主菜单"三个界面才向外输出标准电能脉冲。

五、常见故障分析

1、常见故障

(1)装置接线错误

(2)电能表故障

(3)CT 部分故障

2、经验判断

(1)计量装置正常时综合误差(含 CT 误差、二次接线误差和电表误差)在±3%时。 (2)综合误差在-10%至-3%时一般可能为

- a、电表不准
- b、CT 二次负载重
- c、CT 负误差

(3)综合误差超过10%时可能为

- a、CT 二次接线错误
- b、CT 变比不对
- c、缺相或错相

一般现场工作时可先进行综合误差的测量,综合误差在±3%时系统基本没有问题, 当综合误差较大时可分别进行 CT 误差、电表误差的校验及线路诊断。

3、三相四线制线路常见问题

(1)缺一相

缺某相电压、电流时,可从分析仪的"测量参量1"或"矢量图"两功能项直接看出。缺相原因一般是计量装置的三组元件中的某一组元件出现故障或接线断开。具体可能原因如下:

a、电能表电压线圈一相不通(线圈断路、雷击、电压挂钩与螺钉未接触)

- b、计量回路一次测某相保险熔断或接触不良
- c、电压二次回路一相线路断路(保险熔断或接触不良)

武汉伯恩特电力科技有限公司 电话: 17762792855 传真 027-82621016 网址: https://www.whboente.com/

d、电表或 CT 本身一相电流线圈或 CT 二次绕组开路(线圈烧断、电能表接线端或二次接线端接触不上)

e、二次电流回路中某相电流开路

(2)缺两相

与缺一相的原因和情况基本类似。

(3)电流一相或几相反向

电流反向可从 "矢量"功能中看出,例如上 图所示的情况为 A 相电流反向,反向后角度

与正常应相差180°,

造成此种现象的原因为:

a、A相CT的K1、K2接反

b、A相CT 电缆穿出方向反向

c、CT上K1、K2与实际标注不符

(4)电压与电流错相

一相或几相电压和电流不对应,使实际角度与正常差120°或240°,如下 图(图二十二)

4、三相三线制线路分析方法

三相三线制线路接线正确时矢 量图如右图,错误接线的分析方法参 照三相四线制线路。

5、单相表测量

单相表测量时可用仪器的任意一相进行(通常情况 用 A 相),情况比较简单,此处不做具体讲解。

6、CT 常见故障及原因

(1)故意更换 CT 铭牌

(2)CT 精度不合格

(3)CT 损坏

7、电能表故障

如果接线正确但误差还是很大,则应调整或更换电表。

六、电池维护及充电

仪器采用高性能锂离子充电电池做为内部电源,操作人员不能随意更换其他类型的电池,避免因电平不兼容而造成对仪器的损害。

仪器须及时充电,避免电池深度放电影响电池寿命,

正常使用的情况下尽可能每天充电(长期不用最好在一个月内充一次电),以免影响 使用和电池寿命,每次充电时间应在6小时以上,因内部有充电保护功能,可以对仪器连 续充电。

每次将电池从仪器中取出后仪器内部的电池保护板自动进入保护状态,重新装入电池 后,不能直接工作,需要用充电器给加电使之解除保护状态,才可正常工作。

七、注意事项

- 1、在对测量精度要求较高时,最好要用内部互感器进行测量。接电流互感器时一定 要严格保证电流互感器二次侧不开路。
- 2、钳形互感器是高精密的测量互感器,一定要注意轻拿轻放,避免磕碰、摔坏,否则会影响测试精度。钳形表切口面需保持干净、光洁,不要污染其它杂物,以保证钳形表闭合良好。
- 3、测试开始前请输入正确的设置参数,否则可能会造成数据结果偏差或错误。
- 4、用钳形表卡一次铝排时,一定不要让钳形表切口铁芯碰到铝排,否则可能发生危险,损坏钳形表及仪表。

附录一:常见窃电方式

△缺相法	△欠压法	△欠流法
△移相法	△K1、K2反接法	△破坏电表法

附录二: 被测输入输出接口示意图

此图为面对面板方向

附录三:标准脉冲接口示意图

此图为面对面板方向

附录四: 三相三线计量接线判断

情况一: A、C相电流正确

武汉伯恩特电力科技有限公司

情况五: A、C相电流相间接错,极性正确

情况七: A、C相电流相间接错, 且C相反向

以上所提供的48种接线矢量图中只有第一种情况是正常的接线,其他图都有不 同的问题。

武汉伯恩特电力科技有限公司

在每幅图的下侧给出了判定结果,包括电压接线结果和电流的接线结果,同时还 标注了相序的正确与否。

