

感谢你选择了 BETLBY-C 在线录波器。为了充分发挥分析仪的功能,请首先仔细阅读本使用手册,并

留用随时查阅。

致谢

版本 用户手册版本号: V1.0.4

手册内容有可能因技术升级或修正错漏而变更, 恕不另行通知。 若认为本手册部分内容阐述不清, 希望您能致电给我们, 在此先行表示感谢。没有本公司书面同意, 本手册的全部或部分内容不得抄袭、改 编、或以任何形式的出版、传播。

质量保证

武汉伯恩特电力科技有限公司保证所制造的新品仪器均经过严格的质量确认,并保证完全符合本手册 所给出的规范和特性,同时保证在出厂一年内,如有发现产品的制造瑕疵或器件故障,本公司负责免费给 予修复。但是如果用户有自行更改电路、功能,或未按照安全规范操作而发生异常状况,本公司不提供免 费保修服务,视实际状况收取维修费用。在一年的保修期内,请将故障仪器送回本公司维修中心,本公司 会予以及时、妥善修护。

简 介

BETLBY-C 在线录波器,是以高性能 MCU、嵌入式操作系统为核心,实现了数据采集、处理、传输、存储功能的小型在线录波装置。MODR 具备先进的 DSP 数据处理能力,可实现稳态信号分析,如谐波分析、有效值/派生量计算,以及信号暂态过程的捕捉、记录。

MODR 配备上位机软件包,可安装于基于 Windows 操作系统的计算机,如笔记本电脑、工程师站、DCS 主机等。上位机通过现场总线与 MODR 联机,实现远程控制、数据共享、电气试验等功能。

BETLBY-C 在线录波器主要功能包括:

故障录波:按用户预先定义的故障判据,MODR 实时监测被测信号,并在出现故障时,启动波形录制, 同时通知上位机,录制的数据保存在永久存储器上,掉电不失。此功能可用于电力系统或其他关键设备的 运行监测,用于故障诊断、排除故障。

实时监测:最多可接入16路开关量、16路模拟量。实时计算模拟量有效值,派生量(频率、有功、 无功、零序、负序等),并可实时计算谐波(同时计算3路,最高21次)、矢量图。有效值、开关量可 以实时传输给上位机。

一、功能特征

◆ 电气隔离16路模拟量、16路开关量同步采样

输入信号处理通道全部采用电气隔离,隔离耐压3000VDC。

♦ 采样频率:

模拟量、开关量同步采样频率:2kHz。

◆ 实时有效值计算:

MODR对模拟通道进行无延迟的有效值计算。交流量RMS每20ms生成一点。

♦ 实时派生量计算:

最多可定义8个派生量,包括频率、有功、无功等多个类型。MODR进行无延迟的派生量计算。

◆ 对接入通道、派生量实时监视,多种故障启动方式

在任何运行状态下,根据用户设置的启动量、启动方式、启动值,实时监视接入量,一旦满足启动判据,即按用户设置格式记录波形。故障记录文件存储容量为32MB。如果连接了上位机(PC机),MODR即时通知上位机。

◆ 实时监测:

实时谐波分析、实时波形显示、矢量图画面。

◆ 5 " TTF显示屏;

分辨率为800×480;

- ◆ 串行口通讯RS-485;
- ◆ U盘(8G内存以下)记录文件复制;

二、技术规格

2.1 模拟通道

- ◆ 模拟通道:16路;8路交流电压通道,8路交流电流通道
- ◆ A/D分辨率 : 16位
- ◆ 同步采样频率: 2kHz
- ◆ 有效值准确度: 0.2%
- ◆ 量程:

通道类型	通道名称	输入范围	输入阻抗
U	交流电压通道	AC 0~500V	> 300k Ω
Ι	交流电流通道	AC 0~10A	< 0.05Ω

电压、电流通道的量程可根据用户要求调整;装置支持外接电压、电流互感器,变比可通过软件设置。

2.2 开关量通道

◆ 16路开关量通道

◆ 同步采样频率: 2kHz

标配为外接无源节点,通道内部输出+24V。可根据用户要求配置为各种电压范围的有源节点。

2.3 派生量

最多可设置8路派生量,各类型的准确度如下表所示。派生量的具体种类、算法请参见"5.1.2派生 量"。1921

类型	准确度	备注
频率	±0.02Hz	
有功功率	0.5%	cosφ1.0-0.5 电压>50% 电流>10%
无功功率	0.5%	sinφ1.0-0.5 电压≥50% 电流≥10%
功率因数	1.0%	
正序	1.0%	
负序	1.0%	
零序	1.0%	
两相负序	1.0%	
相角差	$\pm 0.3^{\circ}$	EALER
实测功角	±0.3°	ER
两矢量差	0.5%	201
两矢量和	0.5%	
线路功角	±0.3°	
交流阻抗	0.5%	
同期压差	1.0%	
计算功角	$\pm 1.5^{\circ}$	
标量和		由引用参量决定
标量差		由引用参量决定
一次函数		由引用参量决定

2.4 故障启动方式

- ◆ 模拟量:突变、过量、欠量
- ◆ 开关量:变位(闭合、断开)

2.5 故障记录容量

故障记录总存储容量32MB。最多记录数量为200条,大于200条后,按照先进先出原则循环记录。

2.6 通讯

串行口:1个RS-485端口,最大通讯波特率115200bps。

2.7 显示屏

5" TTF显示屏; 分辨率: 800×480

2.8 机箱规格

外形尺寸:187(宽) ×177(高)×245(深)

重量: 6kg

- 2.9 工作电源
- ◆ 工作电压: 85~264VAC/100~370VDC
- ◆ 输入频率: 47~440Hz

三、结构

3.1 前面板示意图

前面板示意图

前面板按键及接口:

◆ Alarm Off: 清除故障报警信号和指示状态;

- ◆ Enter: 记录、应用对话框的输入,并退出;
- ◆ Esc: 退出菜单(返回到上一级菜单);
- ◆ ↓、↑、←、→键:具体定义取决于所在界面;
- ◆ Tab键: 切换对话框中控件的输入焦点;
- ◆ Manual: 手动启动一次故障记录;
- ◆ USB : U盘接口。
- 3.2 后面板示意图

后面板示意图

后面板端子及接口:

- ◆ Analog:模拟量输入,8路交流电压和8路交流电流接入端口;
- ◆ DI:开关量输,16路开关量输入端口;
- ◆ RS485: 与上位机通讯接口A, B;
- ◆ 运行/通讯指示灯:正常监测时,运行指示灯闪烁;与上位机联机时,通讯指示灯闪烁;
- ◆ POWER: 电源指示灯 (接通电源常亮)。

3.3 安装开孔尺寸图

3.4.2 交流电压/电流通道接线

交流电压/电流通道接线应按被测信号的要求接线,如图所示:

串行口运行状态:显示串行口数据包的传送。交替显示,每次交替表示发送了一个数据包。已记录:已存储到永久存储器的故障记录数量。

采样频率:当前所用的采样频率。

占用率:当前CPU的占用百分率。

■ U盘的连接状态:当前是否连接U盘。

实时时钟:实时显示MODR的时钟。

五、功能及设置

5.1 设置

MODR装置本体完成常规设置功能,另外一些复杂的或需要汉字输入的项目需要使用软件包在PC机上进行配置,具体见"PC软件使用说明"。

在主页面,选择"设置",可以进入以下的设置项。

5.1.1 模拟通道

1、选择"模拟通道",进入"模拟通道设置"页面:

				模拟通	道设置			X
通道	类型	名称	代号	单位	额定值	额定频率	小数位数变比一次	变比二次
1	交流	交流电压Ua		V	500	50		
2	交流	交流电压Ub	Ub	V	500	50	0	
3	交流	交流电压Uc	Uc	V	500	50	0	
4	交流	交流电压Un	Un	V	500	50	0	
5	交流	交流电流I1a	Ila	A	5.00	50	2	
6	交流	交流电流I1b	I1b	A	5.00	50	2	
7	交流	交流电流I1c	I1c	A	5.00	50	2	
8	交流	交流电流I1n	I1n	A	5.00	50	2	
9	交流	交流电流I2a	I2a	A	5.00	50	2	
10	交流	交流电流I2b	I2b	A	5.00	50	2	
11	交流	交流电流I2c	I2c	A	5.00	50	2	
12	交流	交流电流I2n	I2n	A	5.00	50	2	
	设置						确认	退出

模拟通道表格各栏的定义:

- ◆ 单位:最多5个字符。
- ◆ 额定值:不能为零。
- ◆ 小数位数:显示时取小数的位数。
- ◆ 变比一次: PT、CT、分流器的一次值。
- ◆ 变比二次: PT、CT、分流器的二次值。
- ◆ 当不需要设置变比时,将"变比一次"、"变比二次"二栏清空。

2、点击"模拟通道/设置",进入"模拟通道设置"页面,用户可设定模拟通道的单位、额定值、小数位数、变比等参量。

服务至上	诚信诚心						BET
				模拟	通道设置		×
		序号:2; 通	通道号:1; 名称: 交流	充电压Ub; 代号	<mark>ታ:</mark> ሙ;		
		单位	额定值	小数位数	变比一次值	变比二次值	
		V	500.000	0	000.000	000.000	
					ſ	24721 HIT	n)ale
		1- E-				199 IA	1月

3、其他参量设置需在PC机上进行。

4、对于转速信号,变比是极对数的含义。对于部分水轮机组,其转子上的测速齿轮盘的齿数与其极 对数相同,此时应将极对数输入对应的设置项。

例如,某水轮机组的极对数为 28,额定转速为 107.1rpm,其安装于转子上的齿轮盘的齿数也是 28。 此时,应将"变比一次"设为 1、"变比二次"设为 28,并将 MODR 模块上的转速信号选择开关拨至 1:1 处。在运行时,仪表接收到的转速信号,是每分钟发生 107.1×28 = 3000 个脉冲,仪表使用极对数 (28) 计算: 3000 / 28 = 107.1rpm,得到了机组实际的转速。设置的极对数值,不影响发电机功角的计算。

对于额定转速为 3000rpm 的火电机组,应将"变比一次"、"变比二次"二栏清空。

5.1.2 派生量

1、选择"派生量",进入"模拟派生量"页面:

		模拟	派生量							
通道类型 名称	代号	单位	额定值	小数位数	参量1	参量2	参量3	参量4	参量5	参量6
1 频率 电压频率	Fu	Hz	50.00	2 🖵 '	Ua	Ub	Uc			
2 两表法三相有功 有功功率	P /	W 🚽	866	0	Ua	I1a	Ub	I1c		
3 两表法三相无功 无功功率	Q	Var	866	0	Ua	I1a	Ub	I1c		
4 cos Ψ ···································	cosΨ Da		1.000	3	IIa	I1a	0.00			
				-						
设置							确认		退日	H]

模拟派生量表格各栏的定义:

- ◆ 单位:最多5个字符
- ♦ 额定值:不能为零
- ◆ 小数位数:显示时取小数的位数
- ◆ 参量1~6:参与计算的参量。

派生量定义表详见PC软件使用说明"3.6 MODR参量配置"。

2、点击"派生量/设置",进入"派生量设置"页面。

用户可设定派生量的参量单位,额定值及小数位数。其他参量设置需在PC机上进行。

5.1.3 开关量

1、选择"开关量",进入"开关输入通道设置"页面:

		开关输入通道设置		X
通道	名称	代号	外接逻辑	
1	Digital 1	dCh 1	常闭	
2	Digital 2	dCh 2	常开	
3	Digital 3	dCh 3	常闭	
4	Digital 4	dCh 4	常开	
5	Digital 5	dCh 5	常闭	
6	Digital 6	dCh 6	常开	
7	Digital 7	dCh 7	常开	
8	Digital 8	dCh 8	常闭	
9	Digital 9	dCh 9	常开	
10	Digital10	dCh10	常开	
11	Digital11	dCh11	常闭	
12	Digital12	dCh12	常开	
13	Digital13	dCh13	常闭	
14	Digital14	dCh14	常开	
15	Digital15	dCh15	常开	
16	Digital16	dCh16	常开	
ið	The second second	ALC IN A	确认	退出

2、点击"开关量/设置",进入"开关量通道设置"页面:

2; 名称: Digital 3; 代号: dCh 3;
) ————————————————————————————————————
市 开卫从
》常闭节点

设定开关输入通道的外接逻辑。有"常开节点"、"常闭节点"两个选项。当选择"常闭节点"时, MODR将实测的开关状态取反。

3、其他参量设置需在PC机上进行。

5.1.4 模拟量启动值

1、选择"模拟量启动值",进入"故障启动-模拟启动值"页面:

			故障启	詞→模拟	启动值			X
序号	名称	代号	单位	额定值	突变启动	欠量启动	过量启动	
1	交流电压Ua	Ua		500				
2	交流电压Ub	Ub	V	500				
3	交流电压Uc	Uc	V	500				
4	交流电压Un	Un	V	500				
5	交流电流Ila	I1a	A	5.00				
6	交流电流I1b	I1b	A	5.00				
7	交流电流I1c	I1c	A	5.00				
8	交流电流I1n	I1n	A	5.00				
9	交流电流I2a	I2a	A	5.00				
10	交流电流12b	I2b	A	5.00				
11	交流电流I2c	I2c	A	5.00				
12	交流电流I2n	I2n	A	5.00				
		_	_	_	_			
	设置						确认	退出

2、点击"模拟量启动值/设置",进入"模拟通道设置"页面:

启用突变启动	🔲 启用过量启动	🔲 启用欠量启动
变启动值	过量启动值	欠量启动值
000.000	000.000	000.000

运行中,MODR监测模拟量(含派生量)的状态,模拟量的突变、过量、欠量,可以启动故障记录。设 置表格中,每个模拟量对应有"突变启动值"、"过量启动值"、"欠量启动值"3栏,如果此栏为空, 则禁止了该通道的该种启动方式。3种方式的写入值的含义如下:

1) 突变启动值

假设某通道模拟量的"突变启动值"一栏,写入了值Hm。如上图,如果模拟量有效值有一个大于等 于Hm的阶跃(正或负),MODR将启动故障记录,并把TO作为故障零点。其中阶跃时间T必须小于等于60ms, 即MODR不把缓变的模拟量有效值变化认作突变。

2) 过量启动值

假设某模拟量的"过量启动值"一栏,写入了值Vu。如上图,如果模拟量有效值大于Vu,MODR立

即启动故障记录,并把T0作为故障零点。

3) 欠量启动值

假设某模拟量的"欠量启动值"一栏,写入了值V1。如上图,如果模拟量有效值小于V1,MODR立即启 动故障记录,并把TO作为故障零点。

注意:当MODR因某通道过量(欠量)而启动故障数据录制后,为避免该通道保持过量(欠量)状态 而持续启动故障录制,MODR锁定该通道的过量(欠量)启动,直到该通道退出过量(欠量)状态。但是, 处于锁定状态的通道,仍然可以以突变启动故障数据录制。

3、其他参量设置需在PC机上进行。

5.1.5 开关量启动参数

1、选择"开关量启动参数",进入"故障启动-开关启动量"页面:

		故障启动	-开关启动量			X
通道	名称	代号	接入逻辑	闭合启动	断开启动	
1	Digital 1	dCh 1	常开			
2	Digital 2	dCh 2	常开			
3	Digital 3	dCh 3	常开			
4	Digital 4	dCh 4	常开			
5	Digital 5	dCh 5	常开			
6	Digital 6	dCh 6	常开			
7	Digital 7	dCh 7	常开			
8	Digital 8	dCh 8	常开			
9	Digital 9	dCh 9	常开			
10	Digital10	dCh10	常开			
11	Digital11	dCh11	常开			
12	Digital12	dCh12	常开			
13	Digital13	dCh13	常开			
14	Digital14	dCh14	常开			
15	Digital15	dCh15	常开			
16	Digital16	dCh16	常开			
	设置				确认 退	出

2、点击"开关量启动参数/设置",进入"模拟通道设置"页面:

开关启动量-设	<u>置</u>	
序号: 5; 通道号:4; 名称: Digital	5; 代号: dCh 5;	
故障启动方式		
🔲 断开启动	□闭合启动	
	确认 取消	

运行中,MODR监测开关量的状态,开关量的变位可以启动故障记录。设置表格中,每个开关通道对 应有"闭合启动"、"断开启动"2栏。如果栏写入"√",则允许该通道的该种启动方式,否则禁止。

4、其他参量设置需在 PC 机上进行。

5.1.6 故障记录格式

1、选择"故障记录格式",进入"故障记录格式设置"页面:

故障记录	格式设置
波形记录格式	
启动前记录时长(ms) 200 有效值记录格式	总记录长度(ms) 01000
启动前记录时长(ms) 1000 开关量记录格式	总记录长度(ms) 06000
启动前记录时长(ms) 200	总记录长度(ms) 01000

2、当MODR监测到接入参量的状态满足启动判据时,即开始按用户设定的记录格式记录模拟量波形、 模拟量有效值、开关量状态。记录内容如下图:

故障记录的三种数据(波形记录格式、有效值记录格式、开关量记录格式)采用不同的记录格式(故障前、后记录长度,波形记录频率)。

Fw: 波形记录频率, 使用MODR当前采样频率。

Fe: 有效值(含派生量)记录频率,固定为1点/20ms。

Fd: 开关量记录频率, 使用MODR当前采样频率。

3、故障记录格式的参数限制

波形记录格式: 启动前记录时长为100~200ms; 总记录长度为200~5000ms。

有效值记录格式:启动前记录时长为100~1000ms;总记录长度为3000~15000ms。

开关量记录格式:启动前记录时长为100~200ms;总记录长度为200~5000ms。

4、记录容量限制

最大故障记录允许容量为150kB。

5.1.7 设备时钟

选择"设备时钟",进入"时钟设置"页面。 可设置当前主机的日期和时间。

	时有	中设置	X
当前日期、时间			
年 月 【 18 	日 时 08 09	分秒 08 25	
		确	认取消

5.1.8 自动复归

选择"自动复归",进入"设置-报警自动复归"页面:

	设置-报警自动复归		X
故障启动后,是否延时自动复归报警信号。 ✓自动复归 自动复归延时(秒) 002			
		确认	取消

自动复归: 故障启动后, 是否延时自动复归报警信号。

启动复归延时:故障启动后,自动启动复归延时功能,蜂鸣器报警延时关闭,可设置的延时时间是1~ 600秒。

5.2 实时值

1、在主屏幕下,选择"实时值"。页面将显示模拟量数值、开关量状态。画面刷新频率 1次/秒。

	模拟量		
^{UA} v 100	^{12C} 1.00	Digital 9 OFF	
^{UB} _V 100	^{12N} 1.00	Digital10 OFF	
ບໍ່ 100	Digital 1 ON	Digital11 ON	
บที่ 100	Digital 2 OFF	Digital12 OFF	
^{11Å} 1.00	Digital 3 ON	Digital13 ON	
^{11B} 1.00	Digital 4 OFF	Digital14 OFF	
¹¹ C 1.00	Digital 5 ON	Digital15 OFF	
^A ^{11N} 1.00	Digital 6 OFF	Digital16 OFF	
^A ^{I2A} 1.00	Digital 7 OFF		
^A ^{12B} A 1.00	Digital 8 ON		返回

3、运行中,MODR实时进行有效值、派生量计算,所以可以作为实时监测仪使用。并且MODR可以作为 其他设备的数据源,通过串行口发送实时数据包。作为实时监测仪使用时,不影响MODR的故障录波功能。

5.3 实时波形

5.3.1 显示实时-模拟量波形

 安时-模拟量波形

 ach 1

 ach 2

 ach 3

 10.0 ms / DIV

在主屏幕下,选择"实时波形"。此页面显示"实时-模拟量波形":

1、切换键:操作切换,切换画面操作组,共有2组操作:"放大/缩小","移动"。

2、同轴:统一的X-Y坐标系,横轴为时间轴,纵轴采用标幺制。模拟量波形、模拟量有效值的实际值 除以自己的额定值,得到在这个坐标系中的纵向取值。开关量从坐标系的上方依次向上排列。

3、分轴:横轴是统一的时间轴,模拟量波形、模拟量有效值在纵向上依次分区显示。对于模拟量波 形、模拟量有效值,每个分区的纵向幅值是额定值的整数倍。

5.3.2 显示参量选择

点击"实时波形/设置",进入"实时-模拟量-选择"页面。 MODR 最多可同时进行6个模拟通道的实时波显示。

模	似量选择:	
UA		
UB		
UC		
UN		
I1.	4	
I1I	3	
I10	2	
I11	N	
12	A	
I21	3	
120	5	
I21	N	
	4431	 கபி

5.4 谐波分析

5.4.1 实时显示/谐波分析

在主屏幕下,选择"谐波分析",进入"谐波分析"画面:

										谐	波分	析									×
	100.0		UA							THD	: 0.	. 2%									
0.0 DC	1 100.0	0.1 2	0.0 3 UB	0.0 4	0.0	0.0 6	0.1 7	0.0	0.0 9	0.0 10 THD	0.0 11 : 0.	0.0 12 .1%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.1 DC	1 100.0	0.0 2	o.o ŝ UC	0.0 4	0.0 Ś	0.0 6	0.1 7	0.0 8	0.0 9	0.0 10 THD	0.0 11 : 0.	0.0 12 .1%	0.0 13	0.0	0.0	0.0	0.0 17	0.0	0.0	0.0	
0.1 DC	1	0.1 2	0.0 3	0.0 4	0.0 Ś	0.0 6	0.1 7	0.0 8	0.0 9	0.0 10	0.0	0.0 12	0.0 13	0.0	0.0	0.0	0.0 17	0.0	0.0	0.0	し し し し し し し し し し し し し し

5.4.2 选择模拟通道对话框

点击"谐波分析/设置",进入"实时-模拟量-选择"页面(同5.3 实时波形/设置页面)。 MODR最多可同时进行3个模拟通道的谐波显示。

5.5 矢量图

5.5.1 实时显示矢量图

在主屏幕下,选择"矢量图",进入"实时显示/矢量图"页面。画面最多可显示6个交流量的相角, 以选择的第一个为基准。

5.5.2 矢量图设置对话框

点击"矢量图/设置",进入"实时-模拟量-选择"页面(同5.3 实时波形/设置页面)。 MODR最多可同时进行6个模拟通道的矢量图显示。

5.6 故障录波

5.6.1 自动启动

处于运行状态,MODR即依据用户定义的故障判据,实时监测故障的发生,这是MODR不可禁止的功能。

5.6.2 手动启动

- ◆ 当MODR不在故障记录状态时,用户可以手动启动一次故障记录;
- ◆ 通过上位机的"启动录制"按钮或通过前面板的"-键"按键。

5.6.3 故障区

为了避免在使用较慢速永久存储器(如CF卡)时,由于故障记录写入的延时,造成故障记录盲区,MODR 在内存中分配了3个故障记录缓冲区,运行时轮流使用。在状态条上,有这3个区的状态指示,具体参见"4.2 状态条"一节。

5.6.4 事件列表

按主屏幕下,选择菜单的"事件列表",打开记录列表对话框,对话框的列表是故障记录列表。

		1	事件列表	×
序号	状态	启动时间	启动量	
1		2018-04-18 09:15:29	手动启动	
2		2018-04-18 10:01:59	手动启动	
3		2018-04-18 10:02:07	手动启动	
4		2018-04-18 10:02:14	手动启动	
5		2018-04-18 13:54:58	手动启动	
6		2018-04-18 13:55:07	手动启动	
ť	J开	删除 复制到U盘	退出	磁盘容量: 31.72 MB 磁盘空闲: 31.16 故障记录数: 6

在打开的记录列表对话框中,打开选定的记录文件,进入分析画面;用户可以手动删除故障记录,这 是永久删除;还可以进行"打开、删除、复制到U盘,退出"的操作。

5.6.5 记录自动覆盖

MODR采用循环方式管理故障记录。故障启动后,MODR生成一个新的记录,如果此时存储空间不足,MODR 会删除最旧的一个故障记录,然后保存新记录。

MODR能够保存的记录数目,为固定的200条,而故障记录的数据量由记录格式决定,数据量上限请参见"5.1.6 设置-故障记录格式"。

5.6.6 打开故障记录

在打开的记录列表对话框中,选定的故障记录,进入分析画面。 分析画面如下图:

画面横向为时间轴,时间零点为故障启动点,故障前时间显示为负;纵向为幅值,由于各模拟量的额 定值可能不同,为方便比较,纵轴采用标幺制,即为"实时值/额定值"。而光标对应处显示为有名值(实 际值)。

开关量从下向上依次排列,坐标系右侧的"∠xxxx"标明开关量的代号,符号"∠"的尖角位置与开 关量的"断开"状态对应,高于此处的位置为"闭合"状态。

模拟量曲线与光标对应值使用一致的颜色。

按"切换"键,切换键盘操作,共有2组操作:"放大/缩小","移动"。

1) 放大/缩小

P		
X+ +	方向键 →:	放大取景框时间轴,波形横向展开。
X- +	方向键 ←:	缩小取景框时间轴,波形横向压缩。
Y+ + Y- +	方向键 ↑: 方向键 ↓:	放大取景框纵轴(标幺值轴),波形纵向展开。 缩小取景框纵轴(标幺值轴),波形纵向压缩。

2) 移动

X+ +	方向键 ➡:	取景框右移,	波形向左移动。
X+ +	方向键 🛨:	取景框左移,	波形向右移动。
Y+ +	方向键 🕇:	取景框上移,	波形向下移动。
Y+ +	方向键 ↓:	取景框下移,	波形向上移动。

- 3) 故障数据分析可选择波形/有效值的切换显示。
- 4) 故障数据分析可选择同轴/分轴显示。
- 5) 显示参量选择:点击"数据分析/设置",进入"故障分析设置"页面:

可进行模拟量通道选择和开关量通道选择,MODR最多可同时分别进行12个模拟量和16个开关量的选择。

5.6.7 上传故障记录到PC机

上位机可以列出当前MODR存储的全部故障记录文件,并可上传文件到本地硬盘,具体操作请参见PC机 软件包用户手册。

一、PC软件构成

MODR PC软件,通过串行口连接MODR仪器。PC软件包括以下程序:

1) 在线监测(PMR. EXE):

实时与MODR通讯,显示模拟量有效值、开关量状态、故障记录状态。

上传MODR各种记录文件到本地硬盘。

PMR. EXE可以完成MODR全部的参数设置功能。虽然MODR可以完成一部分设置功能,但是一些复杂的或 需要汉字输入的项目需要使用软件包进行,例如:通道类型、通道名称、代号、额定频率等。

2) 数据分析(WS.EXE):

PC机有更好的人机操作环境,可以使用WS.EXE 对包括故障记录在内的各种记录文件作更详尽的分析, 并且可以输出打印。

程序的曲线类试验、波形类试验功能用途广泛,可满足多种动态过程记录要求。 程序也包含几种实时监测功能,如实时值列表、谐波分析、矢量图等。

二、运行准备

2.1 PC机需求

CPU: Intel Pentium 4(或兼容) 2.8GMHz以上处理器

操作系统: Windows NT/2000/XP/Win7

RAM: 2GB或以上

显卡及显示器: 1024×768/16bit色, 推荐1280×960以上

串行口(可选):标准RS-232C串行口

2.2 运行准备

2.2.1 设备通讯

运行前,需要配置PC机与MODR的通讯选择项。使用随机附带的专用串行通讯线(5芯)连接PC机和MODR。 分别在PC机和MODR上选择所用的串行端口,并选择相同的波特率。波特率的选择取决于通信线路的长度, 如不改变串口通讯线,则不必更改。

由PMR程序的"通讯设置"按钮进入。

讯选择 串口通讯 网络通	1讯	
通讯方式		EAT
• 用行口)	East	
○ 网络	201	

在此选择串口通讯的本机端口及波特率。

通讯设置	×
通讯选择 串口通讯 网络通讯	
本机端口 <mark>COM6 ▼</mark> 波特率 115200 ▼	
商定 取消 应	刊(人)

对于具有485接口的型号,还在此选择使用的串行端口号(COM1、COM2)。

设置串行口的波特率: 4800~115200bps可选; 由用户选择能够保证通讯稳定的最高值。

注意:更改MODR的串口设置后,应关机,重新启动。

2.2.2 参量配置

部分参量配置内容可以在MODR上进行;使用PC机软件,可以进行全部设置。

运行前,至少应设置:

- ◆ 模拟通道: 名称、代号, 额定值、变比。
- ◆ 开关量通道: 名称、代号、接入逻辑。
- ◆ 派生量:根据需要配置派生量。

三、监测程序(PMR.EXE)

MODR监测程序需要与MODR联机运行。

3.1 界面

PMR. EXE是一个位于桌面上部的工具条。工具条可以固定在桌面,也可自动隐藏。

前置机记录 模拟里总汇 开关里总汇 2018.05.10 09:08:02 通讯设置 关闭授权 功能菜单 数据分析 退出

通讯状态指示:

监测程序不能与MODR建立通讯,通常是由于设置错误引起,也可能是硬件错误。

监测程序正在与MODR通过串行口通讯,画面的刷新反映了数据包传输速率。

3.2 记录列表

点击"前置机记录"按钮,出现如下"前置机记录列表"窗口:

故障时间	「启动里	
💋 2019. 05. 30-08:48:28	主电源(U1)[过量];	
💋 2019. 05. 30-08:29:44	主电源(V1)[过量];	
💋 2019. 05. 28-14:02:53	手动启动	
💋 2019. 05. 28-09:10:39	手动启动	
💋 2019. 05. 28 - 09:04:14	手动启动	
💋 2019. 05. 28-08: 42:26	手动启动	
💋 2019. 05. 28 - 08: 42: 12	手动启动	
4 2019.05.27-14:19:13	手动启动	
💋 2019, 05, 24-16:00:32	主电源(V1)[突变];	
💋 2019. 05. 24-16:00:18	主电源(V1)[突变];	
💋 2019. 05. 24-16:00:04	主电源(V1)[突变];	
2019.05.24-15:59:50	主电源(V1)[突变];	
💋 2019. 05. 24-15: 59: 36	主电源(V1)[突变];	
💋 2019. 05. 24-15: 59: 22	主电源(V1)[突变];	
💋 2019. 05. 24-15:59:08	主电源(V1)[突变];	
2010 05 24-15.58.54	主中派 OH)「今季1、	

1)在监测程序与MODR建立通讯后,第一次打开记录列表时,监测程序会读取MODR内故障记录的列表。 此后,每当MODR记录了故障,都会通知监测程序,后者会更新列表。

2)列表项的图标表明记录文件是否已经上传到了本地硬盘。 **ジ**表示尚未上传; **达**表示已经上传。 上传按钮: 上传列表中选中的记录文件。

打开按钮:使用数据分析程序打开列表中选中的记录文件;但选中的数据尚未上传时,不能打开。

数据上传的速度,取决于通讯方式和数据的大小。通过串行口通讯时,上传速度决定于串行口波特率 和文件大小,通常会长达几分钟。进度窗口显示上传过程。

	×
正在上传故障记录文件	

3.3 模拟量总汇窗口

模拟量总览		×
a通道 1 aCh1 kV 1	a通道 9 aCh9 V 3	a通道 17 aCh17 V 2
a通道 2 aCh2 v 1.5	a通道 10 aCh10 v 27.5	a通道 18 v 2.1
a通道 3 aCh3 v 1.19	a通道 11 aCh11 v 27.20	频率 PF Hz 一
a通道 4 v 1.246	a通道 12 aCh12 v 2.852	有功 P ₩₩ 1.7
a通道 5 aCh5 v 2	a通道 13 aCh13 v 2	无功 Q MVar 0.0
a通道 6 aCh6 v 1.8	a通道 14 aCh14 v 1.7	pp p2 hz 0.00
a通道 7 gaCh7 g 1.73	a通道 15 aCh15 v 1.75	
a通道 8 aCh8 v 1.732	a通道 16 aCh16 v 1.739	

每秒刷新一次,显示模拟通道有效值、派生量值。

3.4 开关量总汇窗口

**** 开关量总览			×	
d通道 0 dCh0	ON	d通道 9 dCh9	ON	
d通道 1 dCh1	ON	d通道 10 dCh10	ON	
d通道 2 dCh2	ON	d通道 11 dCh11	ON	
d通道 3 dCh3	ON	d通道 12 dCh12	ON	
d通道 4 dCh4	ON	d通道 13 dCh13	ON	Ť
d通道 5 dCh5	ON	d通道 14 dCh14	ON	
d通道 6 dCh6	ON	d通道 15 dCh15	ON	
d通道 7 dCh7	ON			
d通道 8 dCh8	ON			

每秒刷新一次,显示开关量状态。

3.5 输入口令/关闭授权

如果已经设置了口令,则单击"输入口令",会弹出对话框,在用户输入正确的口令后,使能"功能菜单",按钮的文字切换为"关闭授权";单击"关闭授权",会禁止"功能菜单"。

如果没有设置口令,则单击"输入口令",会直接使能"功能菜单"。

3.6 参量配置

MODR配置的参量包括有16路模拟通道、8路派生量、16路开关输入量。用户可以调整这些参量的设置。 受MODR的键盘限制,部分需要输入字母、汉字的设置内容,需要在PC机上进行。

参量配置功能由PMR. EXE的"功能菜单\参量配置"或TRIAL. EXE的"菜单\设置\参量配置"进入。

拟通迫 通道	÷										木1+2火车 -	IN/S	
	***	夕称		伴	P	单位	额宁值	杨宁杨玄	小赤白	六 赤	恋比二次	恋いこう	
1	- 大王	赤谷由 圧11。		10		V	500	50	0	178X	Xru M		
2	次海	交流电圧1%		10		v	500	50	0				
3	~~~~	交流电压10		16		v	500	50	0				
4	之·加	交流电压场		16		v	500	50	0				
5	交流	交流申流I1a		II	a	A	5.00	50	2				
6	交流	交流电流11b		11	ь	A	5.00	50	2				
7	交流	交流申流IIc		II	c	A	5.00	50	2				
8	交流	交流申流I1n		II	n	A	5.00	50	2				
9	交流	交流电流I2a		12	a	A	5.00	50	2				
10	交流	交流电流I2b		12	ь	A	5.00	50	2				
11	交流	交流电流I2c		12	c	A	5.00	50	2				
12	交流	交流电流I2n		12	n	A	5.00	50	2				
13													
14													
15													
16													
生童:													
	类型	名称	(代号	单位	额定值	小	参望1	参量2	参量3	参量4	参量5	参量6	
1	两表法三相有功	发电机有功功率	P	MW	300.0	1	Va	Ila	ՄՆ	Ile			
2	两表法三相无功	发电机无功功率	Q	MVar	300.0	1	Va	Ila	ՄԵ	Ilc			
3	相角差	Vabla	1		360.00	2	Ua	Ila	0.00				
4	相角差	UbcIc to MutErte	2		360.00	2	Մե	Ilc	0.00				
5	频率	机漏频率	Fg	Hz	50.00	2	UB	Ila					

在这个对话框里,用户可以进行全面设置MODR的模拟通道、开关量、派生量的名称、单位、额定值 及小数位数用户可以进行设置。派生量参量1~6,参与计算的参量见下表:

类型	参量1	参量 2	参量 3	参量 4	参量 5	参量 6
瓶家		交流量2	交流量3			
<i>9</i> , 7 ,+	文师里 1	(可选)	(可选)			
相角差	交流量1	交流量2				
两表法三相有功	UAB	IA	UBC	IC		
两表法三相无功	UAB	IA	UBC	IC		
单相有功	U	Ι				
单相无功	U	Ι				
三相累加和有功	UA	IA	UB	IB	UC	IC
三相累加和无功	UA	IA	UB	IB	UC	IC
正序	IA	IB	IC			
负序	IA	IB	IC			
零序	IA	IB	IC			
两矢量差	交流量 A	交流量 B				
两矢量和	交流量 A	交流量 B				

派生量定义表

功率因数	有功	无功			
标量和	参量1	参量 2	参量 3 (可选)		
标量差	参量1	参量 2			
一次函数	参量1	系数	偏移		

注: 派生量的设置为限制设置项,装置出厂后用户不得擅自更改。

3.7 故障记录格式设置

由"功能菜单\故障设置"进入:

·第一校记录 记录长度(秒)	总记录时间(秒)
□ 启用分段记录 -第二段记录 - 采样频率 记录长度(秒)	开关里
故障启动点前(秒) 0.2	故障启动点前(秒) 0.2
置机当前采样频率: 2K/s	前故障记录数据里: 125.1kB 记录数据总里上限: 150.0kB

故障记录格式的详细信息,请参见《MODR用户手册》"5.1.6 故障记录格式"。

3.8 启动故障录制

选择"功能菜单\前置机启动故障录制",则指令 MODR 立即启动故障记录,如同使用 MODR 的菜单命令"启动记录"。

3.9 功角初始角

选择"功能菜单\实测功角初始角"执行此功能,MODR通过转速信号和机端电压的角差计算发电机功 角。由于转速信号传感器在发电机轴上的位置与机端电压并没有确定关系,所以功角测量前应修正因此带 来的初始角。应在发电机并网后、有功功率为零时修正。

服务至上 诚信诚心

3.10 修正时钟

选择"功能菜单\修正前置机时钟!"执行此功能。取 PC 机当前系统时间,校准 MODR 时钟。此处应 注意,MODR 的趋势图的每点数据都附加了时间值;如果校准时钟时,MODR 的趋势图正在运行,则可能导 致趋势图数据间断,或者后记录的数据反而在前的"超越"错误。

3.11 数据分析

选择"功能菜单\数据分析"打开数据分析程序(WS.EXE)(等同于从程序组中打开:开始\程序\ZR-PM \数据分析)。

四、 数据分析程序(WS.EXE)

数据分析程序可以显示、分析、打印各种MODR生成的记录文件。

4.1 界面

打开数据分析界面如下图所示:

数据分析窗口-分轴

数据分析窗口-同轴

4.1.1 参量列表窗口

参量列表分成波形、有效值、开关量3页,列出当前最前的子窗口(数据窗口)的数据文件对应的参 量列表,单击参量名前的图标可以勾选在子窗口中绘制/隐藏该参量。

4.1.2 统计列表窗口

统计列表分成波形、有效值、开关量3页,列出当前最前的子窗口(数据窗口)的数据文件对应的参 量信息。

1) 对于模拟量波形、模拟量有效值,显示的信息包括名称、代号、单位等,包括参量的最大值、最 小值、光标所在点对应的数值。

2) 对于开关量,除名称、代号外,显示开关量动作系列的前5次,以及光标所在点的状态。

3) 改变曲线颜色: 单击参量名称前的颜色区, 会弹出颜色选择菜单。

4) 🗠 : 选中参量名称前此图标,数据分析窗口仅显示此参量的采样点。

4.1.3 数据分析窗口

在数据分析窗口内每个数据文件占有一个子窗口。数据分析程序采用多文档结构,可以打开多个记录 数据文件。

1)对于故障记录,模拟量波形、模拟量有效值、开关量绘制在子窗口内,绘制有两种方式可选(点击进行切换):

同轴:统一的X-Y坐标系,横轴为时间轴,纵轴采用标幺制。模拟量波形、模拟量有效值的实际值除 以自己的额定值,得到在这个坐标系中的纵向取值。开关量从坐标系的上方依次向上排列。

分轴:横轴是统一的时间轴,模拟量波形、模拟量有效值在纵向上依次分区显示。对于模拟量波形、 模拟量有效值,每个分区的纵向幅值是额定值的整数倍。开关量从坐标系的上方依次向上排列。

2)数据分析窗口绘制名称侧均有"基线显示角块",点击进行切换。

4.2 工具条

4.2.1 通用工具条

同轴/分轴显示方式切换

- 栅格显示切换
- ŧ 使 Y 轴 (幅值轴) 偏移归零
- 分轴: 使 Y 轴 (幅值轴) 归为"额定值/格"

同轴: 使Y轴(幅值轴)坐标取标幺制的-1.0至+1.0

0 基线下移一格,曲线上移

0 基线上移一格,曲线下移

4.2.3 分析工具条

😽 📖 😭 📲

- 😽 相位分析
- Ⅰ 谐波分析
- 记录文件属性

🔚 数据格式转换,可以选择输出文本文件或输出Excel表格的格式数据

4.3 打开记录文件

在数据分析程序中,有两种方式打开一个记录文件:

1) Windows通用文件对话框,可以打开所有类型的记录文件,这种方式不限制文件名的格式,只要是 MODR记录文件即可。

2)故障文件选择对话框,该对话框按照MODR生成的故障文件的名称格式,查找指定文件夹中的故障 文件,并且列出。在列表中,显示了故障数据的启动时间、启动量。

3) 直接点击工具栏中的 并开"故障文件选择"对话框。 需要更改默认文件夹时,点击该对话框中的右上角的扩展按钮…,打开"浏览文件夹"对话框,选择目标文件夹。

4) 如果用户改变了故障文件的初始文件名,那么只能用Windows通用文件对话框打开这个文件。

故障时间	自动里	
019.05.27 14:19:13	手动启动	
019.05.24 15:59:50	主电源(01)[突变]:	
019.05.24 15:56:48	主电源(V1)[突变];	
019.05.24 15:56:05	主电源(U1)[突变];	
019.05.24 15:50:42	王电源(01)[突变];	
		E.F.

4.4 打印

在数据分析程序中,数据打印分为同轴、分轴两种形式,程序根据当前曲线窗口的显示模式自动选择。 分轴打印效果如下图所示,如果数据曲线超过一页,将分页输出。

注:考虑打印曲线的显示效果,建议打印方向设置为"横向"。

	V V	V					VV	V V 300.0	光相
								300.0 0.0 100.00	周末
		,						< 40. 1 < 40. 1 < 40. 1	3 2 類2
-160:00	-120.00	-80.00	-40.00	0.00	40.00	80.00 120	0.00 160.0	0 200.00 s	
8.R.	14.0	4.5	57 m /2	人如果上	A27.8 A	10 57 A.L.	in the A	389 + =1	1
98 (01)	109	-102 V	300.0	308.2	-306.6	308.2	-306.3	-266.9	-
# 3E (U2)	U2	V	300.0	0.1	-1.5	0.1	-1.5	-1.4	
(U3)	U3	V	300.0	-0.4	-1.9	-0.4	-1.9	-1.8	
I	I	A	100.00	0. 03	-0.02	0.03	-0.02	0.02	
12	代号	单位	额定值	全程最大	全程最小	祝窗最大	祝安载小	游标1	
源(01)	U1	Ÿ	300.0	224.5	223.2	224.2	223.8	224.2	
會源(U2)	U2	Ÿ	300.0	0.2	0.2	0.2	0.2	0.2	
名词形 (U3)	U3	Y	300.0	0. 3	0.2	0.3	0.3	0.3	-
I	I	A	100.00	0.02	0.01	0.02	0.01	0.01	
11 54	40	24.24		at the	an ing	at the		24 (49	CHARLES .
-1.1	109	4018	4	40174	40182	AU1P4		AUTER	088
•a1 2	dCh 2								OFF
		-180.00 -130.00 #2 (1-9) (200) 10 (200) 10 (200) 10 (200) 10 (200) 10 (200) 10 (100) 10 (200) 10 (200) 10 (200) 10 (200) 10 (200) 10 (200) 10 (200) (200) (200) 10 (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) (200) <	100 100 #2 (7.9) #2 (#0.0) 01 V #2 (7.9) 01 V #2 (7.9) 02 V #2 (7.9) 03 V #2 (7.9) 1 A #2 (7.9) 1 7 #2 (7.9) 1 1 A #2 (7.9) 1 4 2 (2.6) (7.9) 201 3 3	100.00 100.00 100.00 100.00 学生 代令 単位 都定重 (第03) 11 1 3000.0 11 1 A 100.00 12 1 A 100.00 13 1 A 100.00 14 100.00 1 1 15 1 A 100.00 1 1 A 100.00 1 1 A 100.00 1 1 A 100.00 1 1 A 100.00 12 1 A 100.00 13 1 A 100.00	小品のの 小品のの 小品のの 小品のの 小品のの のの 参量 代令 単型 数元位 会信豊大 運動の 11 平 300.0 308.2 運動の 12 平 300.0 308.2 運動の 12 平 300.0 -0.0 1 1 A 100.00 0.03 200.0 1 1 A 100.00 0.03 200.1 11 Y 300.0 0.2 2 運動のの 101 Y 300.0 0.2 2 運動のの 12 Y 300.0 0.2 2 運動のの 12 Y 300.0 0.2 2 運動のの 12 Y 300.0 0.2 2 運動のの 1 A 100.00 0.0 0.0 注意 1 A 100.00 0.0 0.0 注意 1 A 100.00 0.0 0	100.00 100.00 100.00 100.00 0.00 40.00 建築 代号 単空 要定面 全援豊大 全援豊大 全援豊小 建築(20) 101 17 300.0 500.2 300.6 300.0 40.00 40.00 40.00 建築(20) 101 17 300.0 0.01 1.5 1.5 1.5 0.00 -0.00 -0.00 -0.00 -0.00		100.00 100.00 100.00 -100.00 -100.00 <	小田 小

